找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Probabilistic Inductive Logic Programming; Luc Raedt,Paolo Frasconi,Stephen Muggleton Book 2008 Springer-Verlag Berlin Heidelberg 2008 Bay

[復(fù)制鏈接]
樓主: 猛烈抨擊
31#
發(fā)表于 2025-3-26 23:56:48 | 只看該作者
Probabilistic Inductive Logic Programmingintegration of probabilistic reasoning with machine learning and first order and relational logic representations. A rich variety of different formalisms and learning techniques have been developed. A unifying characterization of the underlying learning settings, however, is missing so far..In this
32#
發(fā)表于 2025-3-27 03:55:05 | 只看該作者
Relational Sequence Learningtly be represented using relational atoms. Applying traditional sequential learning techniques to such relational sequences requires one either to ignore the internal structure or to live with a combinatorial explosion of the model complexity. This chapter briefly reviews relational sequence learnin
33#
發(fā)表于 2025-3-27 06:52:05 | 只看該作者
Learning with Kernels and Logical Representationsntation of data and background knowledge are used to form a kernel function, enabling us to subsequently apply a number of kernel-based statistical learning algorithms. Different representational frameworks and associated algorithms are explored in this chapter. In ., the representation of an exampl
34#
發(fā)表于 2025-3-27 11:59:50 | 只看該作者
Markov Logicd relational logic. Markov logic accomplishes this by attaching weights to first-order formulas and viewing them as templates for features of Markov networks. Inference algorithms for Markov logic draw on ideas from satisfiability, Markov chain Monte Carlo and knowledge-based model construction. Lea
35#
發(fā)表于 2025-3-27 14:46:56 | 只看該作者
36#
發(fā)表于 2025-3-27 19:28:20 | 只看該作者
CLP(,): Constraint Logic Programming for Probabilistic Knowledgebles, are represented by terms built from Skolem functors. The CLP(.) language represents the joint probability distribution over missing values in a database or logic program by using constraints to represent Skolem functions. Algorithms from inductive logic programming (ILP) can be used with only
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 18:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
济南市| 临高县| 汾西县| 凤城市| 平和县| 房山区| 云安县| 仙游县| 车致| 苍梧县| 溆浦县| 青河县| 会同县| 吉木萨尔县| 南康市| 习水县| 滦南县| 扬州市| 阳新县| 蒲城县| 昔阳县| 萍乡市| 周至县| 咸阳市| 黑龙江省| 荥经县| 永善县| 叶城县| 盖州市| 泊头市| 丹东市| 容城县| 吉水县| 什邡市| 遵义市| 武冈市| 胶州市| 泰兴市| 永善县| 盐津县| 延津县|