找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Principles of Harmonic Analysis; Anton Deitmar,Siegfried Echterhoff Textbook 2009 Springer-Verlag New York 2009 Abelian group.Fourier seri

[復(fù)制鏈接]
查看: 7993|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:31:56 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Principles of Harmonic Analysis
編輯Anton Deitmar,Siegfried Echterhoff
視頻videohttp://file.papertrans.cn/756/755620/755620.mp4
概述Contains material unavailable elsewhere, including the full proof of Pontryagin Duality and the Plancherel Theorem.Authors emphasize Banach algebras as the cleanest way to get many fundamental results
叢書(shū)名稱Universitext
圖書(shū)封面Titlebook: Principles of Harmonic Analysis;  Anton Deitmar,Siegfried Echterhoff Textbook 2009 Springer-Verlag New York 2009 Abelian group.Fourier seri
描述The tread of this book is formed by two fundamental principles of Harmonic Analysis: the Plancherel Formula and the Poisson S- mation Formula. We ?rst prove both for locally compact abelian groups. For non-abelian groups we discuss the Plancherel Theorem in the general situation for Type I groups. The generalization of the Poisson Summation Formula to non-abelian groups is the S- berg Trace Formula, which we prove for arbitrary groups admitting uniform lattices. As examples for the application of the Trace F- mula we treat the Heisenberg group and the group SL (R). In the 2 2 former case the trace formula yields a decomposition of the L -space of the Heisenberg group modulo a lattice. In the case SL (R), the 2 trace formula is used to derive results like the Weil asymptotic law for hyperbolic surfaces and to provide the analytic continuation of the Selberg zeta function. We ?nally include a chapter on the app- cations of abstract Harmonic Analysis on the theory of wavelets. The present book is a text book for a graduate course on abstract harmonic analysis and its applications. The book can be used as a follow up of the First Course in Harmonic Analysis, [9], or indep- dently, if t
出版日期Textbook 2009
關(guān)鍵詞Abelian group; Fourier series; Hilbert space; algebra; boundary element method; duality; form; function; fun
版次1
doihttps://doi.org/10.1007/978-0-387-85469-4
isbn_softcover978-0-387-85468-7
isbn_ebook978-0-387-85469-4Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightSpringer-Verlag New York 2009
The information of publication is updating

書(shū)目名稱Principles of Harmonic Analysis影響因子(影響力)




書(shū)目名稱Principles of Harmonic Analysis影響因子(影響力)學(xué)科排名




書(shū)目名稱Principles of Harmonic Analysis網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Principles of Harmonic Analysis網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Principles of Harmonic Analysis被引頻次




書(shū)目名稱Principles of Harmonic Analysis被引頻次學(xué)科排名




書(shū)目名稱Principles of Harmonic Analysis年度引用




書(shū)目名稱Principles of Harmonic Analysis年度引用學(xué)科排名




書(shū)目名稱Principles of Harmonic Analysis讀者反饋




書(shū)目名稱Principles of Harmonic Analysis讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:17:42 | 只看該作者
第155620主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 03:26:48 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 05:37:07 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 12:16:34 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 13:29:45 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 18:24:42 | 只看該作者
7樓
8#
發(fā)表于 2025-3-23 00:34:23 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 05:21:50 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:38:13 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-30 00:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
崇礼县| 林周县| 邛崃市| 清河县| 璧山县| 肇州县| 青川县| 万山特区| 宝兴县| 临湘市| 南溪县| 依兰县| 洪洞县| 奉贤区| 石林| 荃湾区| 北碚区| 太保市| 商水县| 巴林右旗| 阿合奇县| 乌什县| 许昌市| 格尔木市| 涟源市| 台中县| 龙陵县| 元氏县| 惠东县| 金坛市| 抚顺县| 平武县| 临高县| 鹿泉市| 二连浩特市| 东港市| 信阳市| 龙门县| 河南省| 沅陵县| 安多县|