找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Polynomial Rings and Affine Algebraic Geometry; PRAAG 2018, Tokyo, J Shigeru Kuroda,Nobuharu Onoda,Gene Freudenburg Conference proceedings

[復(fù)制鏈接]
查看: 43759|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:38:38 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Polynomial Rings and Affine Algebraic Geometry
副標(biāo)題PRAAG 2018, Tokyo, J
編輯Shigeru Kuroda,Nobuharu Onoda,Gene Freudenburg
視頻videohttp://file.papertrans.cn/752/751352/751352.mp4
概述Gathers in a single volume the latest research conducted by an international group of experts on affine and projective algebraic geometry.Covers topics like the Cancellation Problem, the Embedding Pro
叢書名稱Springer Proceedings in Mathematics & Statistics
圖書封面Titlebook: Polynomial Rings and Affine Algebraic Geometry; PRAAG 2018, Tokyo, J Shigeru Kuroda,Nobuharu Onoda,Gene Freudenburg Conference proceedings
描述This proceedings volume gathers selected, peer-reviewed works presented at the Polynomial Rings and Affine Algebraic Geometry Conference, which was held at Tokyo Metropolitan University on February 12-16, 2018. Readers will find some of the latest research conducted by an international group of experts on affine and projective algebraic geometry. The topics covered include group actions and linearization, automorphism groups and their structure as infinite-dimensional varieties, invariant theory, the Cancellation Problem, the Embedding Problem, Mathieu spaces and the Jacobian Conjecture, the Dolgachev-Weisfeiler Conjecture, classification of curves and surfaces, real forms of complex varieties, and questions of rationality, unirationality, and birationality. These papers will be of interest to all researchers and graduate students working in the fields of affine and projective algebraic geometry, as well as on certain aspects of commutative algebra, Lie theory, symplectic geometry andStein manifolds..
出版日期Conference proceedings 2020
關(guān)鍵詞affine variety; locally nilpotent derivation; automorphism group; projective variety; rational curve; Ga-
版次1
doihttps://doi.org/10.1007/978-3-030-42136-6
isbn_softcover978-3-030-42138-0
isbn_ebook978-3-030-42136-6Series ISSN 2194-1009 Series E-ISSN 2194-1017
issn_series 2194-1009
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Polynomial Rings and Affine Algebraic Geometry影響因子(影響力)




書目名稱Polynomial Rings and Affine Algebraic Geometry影響因子(影響力)學(xué)科排名




書目名稱Polynomial Rings and Affine Algebraic Geometry網(wǎng)絡(luò)公開度




書目名稱Polynomial Rings and Affine Algebraic Geometry網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Polynomial Rings and Affine Algebraic Geometry被引頻次




書目名稱Polynomial Rings and Affine Algebraic Geometry被引頻次學(xué)科排名




書目名稱Polynomial Rings and Affine Algebraic Geometry年度引用




書目名稱Polynomial Rings and Affine Algebraic Geometry年度引用學(xué)科排名




書目名稱Polynomial Rings and Affine Algebraic Geometry讀者反饋




書目名稱Polynomial Rings and Affine Algebraic Geometry讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:59:17 | 只看該作者
第151352主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 00:44:42 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 06:07:17 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 09:57:59 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 15:09:58 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 20:45:49 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 21:54:48 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 01:39:28 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 07:45:41 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-5 17:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长治市| 托里县| 深州市| 阳原县| 威宁| 左云县| 师宗县| 孝感市| 图们市| 济宁市| 泽普县| 宁德市| 南涧| 桑植县| 香格里拉县| 微山县| 沁阳市| 康定县| 白水县| 新平| 若羌县| 古田县| 栾川县| 南郑县| 新和县| 清原| 灵台县| 保亭| 曲周县| 陆丰市| 高要市| 洛扎县| 民和| 静宁县| 岳池县| 钟山县| 应城市| 胶南市| 丹东市| 抚宁县| 合水县|