找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Polynomial Convexity; Edgar Lee Stout Book 2007 Birkh?user Boston 2007 Complex analysis.Convexity.Pseudoconvexity.convex hull.functional a

[復(fù)制鏈接]
查看: 44974|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:33:51 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Polynomial Convexity
編輯Edgar Lee Stout
視頻videohttp://file.papertrans.cn/752/751338/751338.mp4
概述Distinctive and comprehensive approach to the theory of polynomially convex sets.Examples and counterexamples illustrate complex ideas
叢書名稱Progress in Mathematics
圖書封面Titlebook: Polynomial Convexity;  Edgar Lee Stout Book 2007 Birkh?user Boston 2007 Complex analysis.Convexity.Pseudoconvexity.convex hull.functional a
描述This book is devoted to an exposition of the theory of polynomially convex sets.Acompact N subset of C is polynomially convex if it is de?ned by a family, ?nite or in?nite, of polynomial inequalities. These sets play an important role in the theory of functions of several complex variables, especially in questions concerning approximation. On the one hand, the present volume is a study of polynomial convexity per se, on the other, it studies the application of polynomial convexity to other parts of complex analysis, especially to approximation theory and the theory of varieties. N Not every compact subset of C is polynomially convex, but associated with an arbitrary compact set, say X, is its polynomially convex hull, X, which is the intersection of all polynomially convex sets that contain X. Of paramount importance in the study of polynomial convexity is the study of the complementary set X X. The only obvious reason for this set to be nonempty is for it to have some kind of analytic structure, and initially one wonders whether this set always has complex structure in some sense. It is not long before one is disabused of this naive hope; a natural problem then is that of giving
出版日期Book 2007
關(guān)鍵詞Complex analysis; Convexity; Pseudoconvexity; convex hull; functional analysis; polynomial convexity; poly
版次1
doihttps://doi.org/10.1007/978-0-8176-4538-0
isbn_ebook978-0-8176-4538-0Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightBirkh?user Boston 2007
The information of publication is updating

書目名稱Polynomial Convexity影響因子(影響力)




書目名稱Polynomial Convexity影響因子(影響力)學(xué)科排名




書目名稱Polynomial Convexity網(wǎng)絡(luò)公開度




書目名稱Polynomial Convexity網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Polynomial Convexity被引頻次




書目名稱Polynomial Convexity被引頻次學(xué)科排名




書目名稱Polynomial Convexity年度引用




書目名稱Polynomial Convexity年度引用學(xué)科排名




書目名稱Polynomial Convexity讀者反饋




書目名稱Polynomial Convexity讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:09:24 | 只看該作者
第151338主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 04:05:03 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 05:19:08 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 12:21:16 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 13:04:05 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 18:35:50 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 22:23:09 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 03:08:11 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:00:29 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 18:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
秀山| 邵阳县| 铜山县| 枣庄市| 松滋市| 花莲市| 南丰县| 冕宁县| 志丹县| 沙坪坝区| 霍州市| 岢岚县| 吕梁市| 安庆市| 夏河县| 盖州市| 米脂县| 来安县| 凤庆县| 明星| 万载县| 隆昌县| 新晃| 丰镇市| 神农架林区| 新闻| 安吉县| 遂川县| 宜章县| 建平县| 青州市| 江陵县| 宜丰县| 和顺县| 余姚市| 图们市| 唐河县| 淮滨县| 乐亭县| 崇文区| 岑溪市|