找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Perturbative Algebraic Quantum Field Theory; An Introduction for Kasia Rejzner Book 2016 The Author(s) 2016 Batalin-Vilkoviski Formalism.E

[復(fù)制鏈接]
查看: 35044|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:09:07 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Perturbative Algebraic Quantum Field Theory
副標(biāo)題An Introduction for
編輯Kasia Rejzner
視頻videohttp://file.papertrans.cn/746/745158/745158.mp4
概述A brief, though complete and self-consistent, introduction to perturbative Algebraic Quantum Field Theory (pAQFT).Written by one of the leading experts in the field.The reader get all the prerequisite
叢書名稱Mathematical Physics Studies
圖書封面Titlebook: Perturbative Algebraic Quantum Field Theory; An Introduction for  Kasia Rejzner Book 2016 The Author(s) 2016 Batalin-Vilkoviski Formalism.E
描述.Perturbative Algebraic Quantum Field Theory (pAQFT), the subject of this book, is a complete and mathematically rigorous treatment of perturbative quantum field theory (pQFT) that doesn’t require the use of divergent quantities and works on a large class of Lorenzian manifolds..We discuss in detail the examples of scalar fields, gauge theories and the effective quantum gravity..pQFT models describe a wide range of physical phenomena and have remarkable agreement with experimental results. Despite this success, the theory suffers from many conceptual problems. pAQFT is a good candidate to solve many, if not all, of these conceptual problems..Chapters 1-3 provide some background in mathematics and physics. Chapter 4 concerns classical theory of the scalar field, which is subsequently quantized in chapters 5 and 6. Chapter 7 covers gauge theory and chapter 8 discusses effective quantum gravity..The book aims to be accessible to researchers and graduate students, who are interested in the mathematical foundations of pQFT..
出版日期Book 2016
關(guān)鍵詞Batalin-Vilkoviski Formalism; Epstein-Glaser Method; Locally Covariant Quantum Field Theory; Algebraic
版次1
doihttps://doi.org/10.1007/978-3-319-25901-7
isbn_softcover978-3-319-79857-8
isbn_ebook978-3-319-25901-7Series ISSN 0921-3767 Series E-ISSN 2352-3905
issn_series 0921-3767
copyrightThe Author(s) 2016
The information of publication is updating

書目名稱Perturbative Algebraic Quantum Field Theory影響因子(影響力)




書目名稱Perturbative Algebraic Quantum Field Theory影響因子(影響力)學(xué)科排名




書目名稱Perturbative Algebraic Quantum Field Theory網(wǎng)絡(luò)公開度




書目名稱Perturbative Algebraic Quantum Field Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Perturbative Algebraic Quantum Field Theory被引頻次




書目名稱Perturbative Algebraic Quantum Field Theory被引頻次學(xué)科排名




書目名稱Perturbative Algebraic Quantum Field Theory年度引用




書目名稱Perturbative Algebraic Quantum Field Theory年度引用學(xué)科排名




書目名稱Perturbative Algebraic Quantum Field Theory讀者反饋




書目名稱Perturbative Algebraic Quantum Field Theory讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:35:38 | 只看該作者
第145158主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 02:01:00 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 07:15:47 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 11:20:35 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 16:35:11 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 17:17:06 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 23:30:58 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 01:45:36 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:13:52 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 13:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
西峡县| 凭祥市| 普兰店市| 罗城| 长宁区| 海安县| 平邑县| 曲沃县| 玉环县| 密云县| 普洱| 札达县| 抚顺县| 屯昌县| 长岭县| 密云县| 靖安县| 镇雄县| 桦甸市| 正安县| 庄河市| 环江| 简阳市| 崇明县| 玉溪市| 湘乡市| 涡阳县| 富阳市| 蒙阴县| 彩票| 青田县| 双鸭山市| 商南县| 灵璧县| 梁河县| 江川县| 会东县| 凉城县| 乌鲁木齐市| 安溪县| 万全县|