找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Periodic Motions to Chaos in a Spring-Pendulum System; Yu Guo,Albert C. J. Luo Book 2023 The Editor(s) (if applicable) and The Author(s),

[復(fù)制鏈接]
查看: 25119|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:01:55 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Periodic Motions to Chaos in a Spring-Pendulum System
編輯Yu Guo,Albert C. J. Luo
視頻videohttp://file.papertrans.cn/745/744062/744062.mp4
概述Delivers one of the simplest nonlinear dynamical systems for one‘to learn nonlinear dynamical systems.Presents nonlinear harmonic frequency-amplitude characteristics of periodic motions.Establishes se
叢書名稱Synthesis Lectures on Mechanical Engineering
圖書封面Titlebook: Periodic Motions to Chaos in a Spring-Pendulum System;  Yu Guo,Albert C. J. Luo Book 2023 The Editor(s) (if applicable) and The Author(s),
描述.This book builds on the fundamental understandings, learned in undergraduate engineering and physics in principles of dynamics and control of mechanical systems.? The design of real-world mechanical systems and devices becomes far more complex than the spring-pendulum system to which most engineers have been exposed.? The authors provide one of the simplest models of nonlinear dynamical systems for learning complex nonlinear dynamical systems...The book addresses the complex challenges of the necessary modeling for the design of machines. The book addresses the methods to create a mechanical system with stable and unstable motions in environments influenced by an array of motion complexity including varied excitation frequencies ranging from periodic motions to chaos..Periodic motions to chaos, in a periodically forced nonlinear spring pendulum system, are presented through the discrete mapping method, and the corresponding stability and bifurcations of periodic motions on the bifurcation trees are presented. Developed semi-analytical solutions of periodical motions to chaos help the reader to understand complex nonlinear dynamical behaviors in nonlinear dynamical systems. Especia
出版日期Book 2023
關(guān)鍵詞Nonlinear spring-pendulum; Periodic motions to chaos; Analytical Bifurcation Trees; Unstable and stable
版次1
doihttps://doi.org/10.1007/978-3-031-17883-2
isbn_softcover978-3-031-17885-6
isbn_ebook978-3-031-17883-2Series ISSN 2573-3168 Series E-ISSN 2573-3176
issn_series 2573-3168
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Periodic Motions to Chaos in a Spring-Pendulum System影響因子(影響力)




書目名稱Periodic Motions to Chaos in a Spring-Pendulum System影響因子(影響力)學(xué)科排名




書目名稱Periodic Motions to Chaos in a Spring-Pendulum System網(wǎng)絡(luò)公開度




書目名稱Periodic Motions to Chaos in a Spring-Pendulum System網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Periodic Motions to Chaos in a Spring-Pendulum System被引頻次




書目名稱Periodic Motions to Chaos in a Spring-Pendulum System被引頻次學(xué)科排名




書目名稱Periodic Motions to Chaos in a Spring-Pendulum System年度引用




書目名稱Periodic Motions to Chaos in a Spring-Pendulum System年度引用學(xué)科排名




書目名稱Periodic Motions to Chaos in a Spring-Pendulum System讀者反饋




書目名稱Periodic Motions to Chaos in a Spring-Pendulum System讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:12:21 | 只看該作者
第144062主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 03:50:26 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 05:55:10 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 12:33:19 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 16:54:26 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 18:40:53 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 22:02:57 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 04:35:43 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:01:05 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 03:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
威远县| 扶风县| 玉林市| 湘潭市| 蓝田县| 剑阁县| 崇义县| 星子县| 霸州市| 平遥县| 安仁县| 长海县| 安宁市| 旬邑县| 特克斯县| 宁都县| 广饶县| 昭通市| 辽阳县| 洞头县| 吴川市| 建阳市| 醴陵市| 久治县| 双江| 辽阳县| 榆树市| 乾安县| 通河县| 明光市| 泗阳县| 莲花县| 永修县| 延吉市| 兰考县| 田阳县| 桂平市| 垦利县| 翼城县| 盐山县| 道孚县|