找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Partial Differential Equations V; Asymptotic Methods f M. V. Fedoryuk Book 1999 Springer-Verlag Berlin Heidelberg 1999 Asymptotic expansion

[復制鏈接]
樓主: ARSON
11#
發(fā)表于 2025-3-23 13:18:03 | 只看該作者
12#
發(fā)表于 2025-3-23 17:42:12 | 只看該作者
,Asymptotic Expansion as , → ∞ of the Solutions of Exterior Boundary Value Problems for Hyperbolic Equations and Quasiclassical Approximations,called simply functions from here on), and . is a (./2) x . matrix of differential operators of order no higher than . — 1. From the conditions . formulated below, it follows that . is even. As a special case, (1) may be a Cauchy problem (this means Ω = ?.).
13#
發(fā)表于 2025-3-23 21:45:07 | 只看該作者
14#
發(fā)表于 2025-3-23 22:14:35 | 只看該作者
15#
發(fā)表于 2025-3-24 06:04:02 | 只看該作者
16#
發(fā)表于 2025-3-24 10:33:50 | 只看該作者
The Averaging Method for Partial Differential Equations (Homogenization) and Its Applications,In this paper we consider numerically asymptotic methods for solving partial differential equations with rapidly oscillating periodic coefficients and their application in the solution of a number of problems of mechanics. The paper
17#
發(fā)表于 2025-3-24 11:28:53 | 只看該作者
M. V. FedoryukThe authors survey an important topic in PDE which is highly relevant for applications in physics
18#
發(fā)表于 2025-3-24 15:23:14 | 只看該作者
978-3-642-63586-1Springer-Verlag Berlin Heidelberg 1999
19#
發(fā)表于 2025-3-24 21:14:55 | 只看該作者
20#
發(fā)表于 2025-3-25 03:13:44 | 只看該作者
Equations with Rapidly Oscillating Solutions,, the equations of elasticity, the Schr?dinger equation, the Dirac equation, and others. There are also nonlinear equations having analogous solutions. Interest in these solutions is becoming immense in theoretical and mathematical physics (the short-wave approximation, the high-frequency approximation, the quasi-classical approximation, etc.).
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 15:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
道真| 博野县| 屯门区| 玉环县| 宁强县| 洛扎县| 文安县| 新丰县| 德格县| 微山县| 吉林市| 冷水江市| 应城市| 金坛市| 监利县| 公主岭市| 南华县| 磴口县| 宜丰县| 六枝特区| 宁陕县| 丹阳市| 长宁县| 武汉市| 米泉市| 太仆寺旗| 遂平县| 秭归县| 赤壁市| 江陵县| 新乡县| 昆明市| 九寨沟县| 乐亭县| 宿迁市| 武义县| 龙海市| 化州市| 高雄市| 图片| 枞阳县|