找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Parameterized Complexity in the Polynomial Hierarchy; Extending Parameteri Ronald de Haan Book 2019 Springer-Verlag GmbH Germany, part of S

[復制鏈接]
樓主: Pierce
21#
發(fā)表于 2025-3-25 04:05:19 | 只看該作者
Problems in Judgment Aggregationce—this is a continuation of our parameterized complexity investigation of problems at higher levels of the Polynomial Hierarchy using the parameterized complexity tools that we developed in Chaps.?.–..
22#
發(fā)表于 2025-3-25 09:18:28 | 只看該作者
23#
發(fā)表于 2025-3-25 11:38:19 | 只看該作者
24#
發(fā)表于 2025-3-25 17:00:52 | 只看該作者
Parameterized Complexity in the Polynomial Hierarchy978-3-662-60670-4Series ISSN 0302-9743 Series E-ISSN 1611-3349
25#
發(fā)表于 2025-3-25 21:06:39 | 只看該作者
26#
發(fā)表于 2025-3-26 02:32:47 | 只看該作者
Parameterized Complexity TheoryIn Chapt.?., we went over some of the central notions and results from the theory of classical complexity, that play a role in this thesis. In this chapter, we will give a similar overview of the area of parameterized complexity theory.
27#
發(fā)表于 2025-3-26 06:19:51 | 只看該作者
Fpt-Reducibility to SATIn the traditional parameterized complexity literature, the concept of fixed-parameter tractability is commonly used as a desideratum for algorithms that solve a particular problem in its entirety (i.e., fpt-algorithms) [27, 66, 67, 85, 166].
28#
發(fā)表于 2025-3-26 12:21:54 | 只看該作者
The Need for a New Completeness TheoryIn Chap.?., we showed that known parameterized complexity classes such as . and . can be used to characterize many-to-one fpt-reductions to SAT and UNSAT.
29#
發(fā)表于 2025-3-26 14:18:19 | 只看該作者
A New Completeness TheoryIn Chapter?., we identified several natural parameterized variants of our running example (the consistency problem for disjunctive answer set programming) whose complexity cannot be adequately characterized using the known parameterized complexity classes.
30#
發(fā)表于 2025-3-26 18:27:00 | 只看該作者
Fpt-Algorithms with Access to a SAT Oraclewe introduced the idea of fpt-reductions to SAT
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-25 15:32
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
兴城市| 鲜城| 闵行区| 普宁市| 永泰县| 武穴市| 龙陵县| 竹北市| 新干县| 公主岭市| 米林县| 梅河口市| 习水县| 襄垣县| 泗洪县| 寻甸| 额尔古纳市| 晴隆县| 商城县| 长子县| 肇庆市| 瓦房店市| 昌都县| 寿宁县| 蒙自县| 房山区| 建瓯市| 久治县| 嘉兴市| 海南省| 崇义县| 莲花县| 德江县| 合肥市| 怀化市| 安宁市| 田林县| 土默特左旗| 巩留县| 工布江达县| 兰考县|