找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Orthogonal Polynomials and their Applications; Proceedings of an In Manuel Alfaro,Jesús S. Dehesa,Jaime Vinuesa Conference proceedings 1988

[復(fù)制鏈接]
樓主: Coarse
31#
發(fā)表于 2025-3-27 00:36:10 | 只看該作者
32#
發(fā)表于 2025-3-27 04:31:37 | 只看該作者
33#
發(fā)表于 2025-3-27 07:45:05 | 只看該作者
A review of orthogonal polynomials satisfying boundary value problems, The first three are classical, with well known properties, including weights, orthogonality, moments. The fourth is less well known. A real weight has not been found..All, however, are orthogonal with respect to a distributional weight . where μ. is the nth moment associated with the polynomials an
34#
發(fā)表于 2025-3-27 11:35:50 | 只看該作者
35#
發(fā)表于 2025-3-27 14:19:48 | 只看該作者
Factorization of second order difference equations and its application to orthogonal polynomials, shift operator, can be factored as the product of two first order expressions. This result is used to obtain asymptotics over the complex plane for a class of polynomials orthonormal over the real line.
36#
發(fā)表于 2025-3-27 19:03:45 | 只看該作者
The distribution of zeros of the polynomial eigenfunctions of ordinary differential operators of arlated via its moments directly in terms of the parameters which characterize the operators. Some results of K.M. Case and the authors are extended. In particular, the restriction for the degree of the polynomial coefficient of the ith-derivative to be not greater than i is relaxed. Applications to t
37#
發(fā)表于 2025-3-27 23:37:21 | 只看該作者
38#
發(fā)表于 2025-3-28 05:03:51 | 只看該作者
Associated Askey-Wilson polynomials as Laguerre-Hahn orthogonal polynomials,vided difference operator used here is essentially the Askey-Wilson operator . where y.(x) and y.(x) are the two roots of Ay.+2Bxy+Cx.++2Dy+2Ex+f=0..The related Laguerre-Hahn orthogonal polynomials are then introduced as the denominators P.,P.,… of the successive approximants Q./P. of the Gauss-Hein
39#
發(fā)表于 2025-3-28 09:48:51 | 只看該作者
40#
發(fā)表于 2025-3-28 12:54:50 | 只看該作者
978-3-540-19489-7Springer-Verlag Berlin Heidelberg 1988
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 07:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临澧县| 新巴尔虎右旗| 浠水县| 长沙县| 麻江县| 即墨市| 宁波市| 前郭尔| 鹤岗市| 延吉市| 泸西县| 公安县| 门头沟区| 浑源县| 同德县| 宜宾县| 新余市| 扶绥县| 新余市| 尼玛县| 绥中县| 上高县| 双流县| 珠海市| 西畴县| 鱼台县| 南充市| 泸水县| 岳西县| 大厂| 张家口市| 曲麻莱县| 永川市| 东阿县| 鹰潭市| 彭阳县| 鱼台县| 玉屏| 登封市| 江川县| 苏尼特右旗|