找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Orthogonal Polynomials; 2nd AIMS-Volkswagen Mama Foupouagnigni,Wolfram Koepf Conference proceedings 2020 Springer Nature Switzerland AG 20

[復(fù)制鏈接]
樓主: OBESE
31#
發(fā)表于 2025-3-26 21:21:47 | 只看該作者
On the Solutions of Holonomic Third-Order Linear Irreducible Differential Equations in Terms of Hyperd-order linear differential operator L, with rational function coefficients and without Liouvillian solutions, in terms of functions . where .. with .?∈{0, 1, 2}, .?∈{1, 2}, is the generalized hypergeometric function. That means we find rational functions ., .., .., .., . such that the solution of
32#
發(fā)表于 2025-3-27 01:49:17 | 只看該作者
Hypergeometric Multivariate Orthogonal Polynomials orthogonal polynomials, including classical continuous, classical discrete, their .-analogues and also classical orthogonal polynomials on nonuniform lattices. In all these cases, the orthogonal polynomials are solution of a second-order differential, difference, .-difference, or divided-difference
33#
發(fā)表于 2025-3-27 06:38:22 | 只看該作者
Some Characterization Problems Related to Sheffer Polynomial Setsonal polynomial sets of Sheffer type. We revisit some families in the literature and we state an explicit formula giving the exact number of Sheffer type .-orthogonal sets. We investigate, in detail, the (.?+?1)-fold symmetric case as well as the particular cases .?=?1, 2, 3.
34#
發(fā)表于 2025-3-27 13:21:35 | 只看該作者
35#
發(fā)表于 2025-3-27 17:17:53 | 只看該作者
Two Variable Orthogonal Polynomials and Fejér-Riesz Factorizationnal polynomials is reviewed with an eye toward applying it to the bivariate case. The lexicographical and reverse lexicographical orderings are used to order the monomials for the Gram–Schmidt procedues and recurrence formulas are derived between the polynomials of different degrees. These formulas
36#
發(fā)表于 2025-3-27 20:38:27 | 只看該作者
Exceptional Orthogonal Polynomials and Rational Solutions to Painlevé Equations summarize the basic results and construction of exceptional poynomials, developed over the past 10 years. In addition, some new results are presented on the construction of rational solutions to Painlevé equation P. and its higher order generalizations that belong to the .-Painlevé hierarchy. The c
37#
發(fā)表于 2025-3-28 00:57:46 | 只看該作者
38#
發(fā)表于 2025-3-28 04:04:09 | 只看該作者
39#
發(fā)表于 2025-3-28 09:18:54 | 只看該作者
Conference proceedings 2020m other local universities in the domain of orthogonal polynomials and applications. The topics addressed range from univariate to multivariate orthogonal polynomials, from multiple orthogonal polynomials and random matrices to orthogonal polynomials and Painlevé equations..The contributions are bas
40#
發(fā)表于 2025-3-28 13:56:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 03:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
城口县| 吴桥县| 莱州市| 万荣县| 卫辉市| 巴中市| 登封市| 大洼县| 昌黎县| 蒲城县| 利津县| 宁晋县| 蓬安县| 磐石市| 阳高县| 洛隆县| 重庆市| 姜堰市| 湟源县| 自治县| 阜平县| 亳州市| 治多县| 信宜市| 资源县| 同心县| 蚌埠市| 美姑县| 和田市| 淮南市| 莱芜市| 龙川县| 英吉沙县| 文山县| 清徐县| 古交市| 遂宁市| 安国市| 五峰| 城市| 廊坊市|