找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Orlicz Spaces and Generalized Orlicz Spaces; Petteri Harjulehto,Peter H?st? Book 2019 Springer Nature Switzerland AG 2019 Extrapolation.Ma

[復(fù)制鏈接]
查看: 16294|回復(fù): 36
樓主
發(fā)表于 2025-3-21 18:18:56 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Orlicz Spaces and Generalized Orlicz Spaces
編輯Petteri Harjulehto,Peter H?st?
視頻videohttp://file.papertrans.cn/705/704656/704656.mp4
概述The first book on harmonic analysis in generalized Orlicz spaces.Considers the most general class of F-functions, giving a systematic presentation of the use of equivalent F-functions to simplify proo
叢書(shū)名稱(chēng)Lecture Notes in Mathematics
圖書(shū)封面Titlebook: Orlicz Spaces and Generalized Orlicz Spaces;  Petteri Harjulehto,Peter H?st? Book 2019 Springer Nature Switzerland AG 2019 Extrapolation.Ma
描述.This book presents a systematic treatment of generalized Orlicz spaces (also known as Musielak–Orlicz spaces) with minimal assumptions on the generating Φ-function. It introduces and develops a technique centered on the use of equivalent Φ-functions. Results from classical functional analysis are presented in detail and new material is included on harmonic analysis. Extrapolation is used to prove, for example, the boundedness of Calderón–Zygmund operators. Finally, central results are provided for Sobolev spaces, including Poincaré and Sobolev–Poincaré inequalities in norm and modular forms...Primarily aimed at researchers and PhD students interested in Orlicz spaces or generalized Orlicz spaces, this book can be used as a basis for advanced graduate courses in analysis..
出版日期Book 2019
關(guān)鍵詞Extrapolation; Maximum Function; Musielak-Orlicz Space; Orlicz Space; Phi-function; Sobolev Space; partial
版次1
doihttps://doi.org/10.1007/978-3-030-15100-3
isbn_softcover978-3-030-15099-0
isbn_ebook978-3-030-15100-3Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書(shū)目名稱(chēng)Orlicz Spaces and Generalized Orlicz Spaces影響因子(影響力)




書(shū)目名稱(chēng)Orlicz Spaces and Generalized Orlicz Spaces影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Orlicz Spaces and Generalized Orlicz Spaces網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Orlicz Spaces and Generalized Orlicz Spaces網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Orlicz Spaces and Generalized Orlicz Spaces被引頻次




書(shū)目名稱(chēng)Orlicz Spaces and Generalized Orlicz Spaces被引頻次學(xué)科排名




書(shū)目名稱(chēng)Orlicz Spaces and Generalized Orlicz Spaces年度引用




書(shū)目名稱(chēng)Orlicz Spaces and Generalized Orlicz Spaces年度引用學(xué)科排名




書(shū)目名稱(chēng)Orlicz Spaces and Generalized Orlicz Spaces讀者反饋




書(shū)目名稱(chēng)Orlicz Spaces and Generalized Orlicz Spaces讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:37:20 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:30:51 | 只看該作者
地板
發(fā)表于 2025-3-22 07:27:08 | 只看該作者
5#
發(fā)表于 2025-3-22 08:55:32 | 只看該作者
6#
發(fā)表于 2025-3-22 15:57:45 | 只看該作者
Petteri Harjulehto,Peter H?st?of polynucleotides, were synthesized and studied. In this review polymers which have backbones analogous to those of plastics and substituents analogous to those of polynucleotides are described; further in the text these compounds are named polynucleotide analogs. The interactions of polynucleotide
7#
發(fā)表于 2025-3-22 17:08:44 | 只看該作者
Petteri Harjulehto,Peter H?st?ing withits appearance in thesuch systems as Mycin and Prospector. The papers in thisvolume reflect the current range of interests or researchersin thefield. Currently, the major approaches to uncertaintyinclude fuzzy set theory, probabilistic methods,mathematical theory of evidence, non-standardlog
8#
發(fā)表于 2025-3-23 01:02:36 | 只看該作者
9#
發(fā)表于 2025-3-23 03:46:44 | 只看該作者
10#
發(fā)表于 2025-3-23 06:28:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 00:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
滨州市| 新源县| 乌拉特中旗| 韶关市| 华亭县| 攀枝花市| 涡阳县| 泾源县| 饶平县| 广丰县| 河北区| 宝兴县| 黔西县| 东山县| 牙克石市| 香港| 京山县| 临猗县| 垫江县| 和林格尔县| 东山县| 临洮县| 全南县| 白朗县| 盱眙县| 越西县| 凉山| 长垣县| 宜丰县| 通许县| 镇雄县| 正镶白旗| 渝北区| 雅江县| 渭源县| 桓仁| 太仆寺旗| 三穗县| 兴义市| 洪江市| 西昌市|