找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Ordered and Turbulent Patterns in Taylor-Couette Flow; C. David Andereck,F. Hayot Book 1992 Springer Science+Business Media New York 1992

[復制鏈接]
樓主: Limbic-System
31#
發(fā)表于 2025-3-26 21:45:45 | 只看該作者
32#
發(fā)表于 2025-3-27 04:18:49 | 只看該作者
33#
發(fā)表于 2025-3-27 08:24:58 | 只看該作者
Low-Dimensional Spectral Truncations for Taylor-Couette Flow needed during time integration. The method will be applied to temporally quasiperiodic and chaotic Taylor-Couette flows, with the choice of basis functions based on previous numerical work. Implementation is in progress.
34#
發(fā)表于 2025-3-27 09:54:31 | 只看該作者
35#
發(fā)表于 2025-3-27 15:43:56 | 只看該作者
36#
發(fā)表于 2025-3-27 21:09:28 | 只看該作者
Chaotic Phase Diffusion through the Interaction of Phase Slip Processeser .. varies in space such that it becomes subcritical, . < .., in part of the system (‘subcritical ramp’), then the stable band is reduced and - in the limit of infinitely slow variations - shrinks to a single wave number.. Of particular interest in the present context is the fact, that the solutio
37#
發(fā)表于 2025-3-28 01:12:07 | 只看該作者
38#
發(fā)表于 2025-3-28 04:15:14 | 只看該作者
Instability of Taylor-Couette Flow Subjected to a Coriolis Force the nonaxisymmetric Coriolis force. Several other novel patterns also arise. At somewhat large system rotation rates, there is a direct transition from the base flow to strong spatiotemporal turbulence. At small values of Ω (where Ω is a dimensionless measure of the angular frequency of the rotatin
39#
發(fā)表于 2025-3-28 06:31:18 | 只看該作者
40#
發(fā)表于 2025-3-28 11:54:53 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 19:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
达孜县| 英德市| 巴塘县| 双鸭山市| 德江县| 榆林市| 博湖县| 安丘市| 文成县| 灵武市| 克山县| 大同市| 河南省| 辽中县| 普洱| 珠海市| 湖州市| 丹凤县| 临邑县| 尼勒克县| 桐庐县| 泽普县| 图们市| 许昌市| 时尚| 龙泉市| 香格里拉县| 小金县| 大安市| 英德市| 汶川县| 榆林市| 连山| 山西省| 桂林市| 堆龙德庆县| 德安县| 赤水市| 新竹县| 兰西县| 商河县|