找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Orbital Relative Motion and Terminal Rendezvous; Analytic and Numeric Jean Albert Kéchichian Book 2021 The Editor(s) (if applicable) and Th

[復(fù)制鏈接]
樓主: 突然
11#
發(fā)表于 2025-3-23 12:24:03 | 只看該作者
12#
發(fā)表于 2025-3-23 14:02:11 | 只看該作者
Orbital Relative Motion and Terminal Rendezvous978-3-030-64657-8Series ISSN 0924-4263 Series E-ISSN 2542-8896
13#
發(fā)表于 2025-3-23 18:21:19 | 只看該作者
Book 2021ives. The first is to derive the mathematics of relative motion in near-circular orbit when subjected to perturbations emanating from the oblateness of the Earth, third-body gravity, and atmospheric drag. The mathematics are suitable for quick trajectory prediction and the creation of computer codes
14#
發(fā)表于 2025-3-23 22:18:29 | 只看該作者
15#
發(fā)表于 2025-3-24 02:21:57 | 只看該作者
16#
發(fā)表于 2025-3-24 08:57:24 | 只看該作者
Analytic Solutions for the Perturbed Motion of a Spacecraft in Near-Circular Orbit, Under the Influthe . harmonic, a position error of 200?m per revolution is sustained when the initial orbit is circular. The equations developed in this chapter can be used to carry out terminal rendezvous in near-circular obit around the oblate Earth.
17#
發(fā)表于 2025-3-24 14:12:37 | 只看該作者
The Analysis of the Relative Motion in General Elliptic Orbit with Respect to a Dragging and Precese equations can be effectively put to use in calculating by an iterative scheme, the impulsive rendezvous maneuvers in elliptic orbit around the Earth or those planets that are either atmosphere bearing or have a dominant second zonal harmonic, or both.
18#
發(fā)表于 2025-3-24 16:39:59 | 只看該作者
19#
發(fā)表于 2025-3-24 21:48:17 | 只看該作者
Effect of Luni-Solar Gravity Perturbations on a Near-Circular Orbit: Third-Body Orbit Eccentricity ied out, all the orbital elements can be readily obtained and used for example in the maneuver planning function. This theory can be useful for the autonomous navigation of geostationary spacecraft as well as other high near-circular orbit applications such as the GPS spacecraft.
20#
發(fā)表于 2025-3-25 03:03:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 02:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
岢岚县| 长顺县| 阳泉市| 竹北市| 丹凤县| 武山县| 郎溪县| 原阳县| 郎溪县| 东乌珠穆沁旗| 凤城市| 布尔津县| 盖州市| 阜平县| 海南省| 平果县| 阿鲁科尔沁旗| 东明县| 无极县| 柳州市| 景宁| 白河县| 石阡县| 张家口市| 桐梓县| 多伦县| 威远县| 库尔勒市| 永靖县| 类乌齐县| 葫芦岛市| 镇安县| 沙洋县| 昭通市| 视频| 山东省| 会东县| 彝良县| 马关县| 绥德县| 叶城县|