找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Optimum Designs for Multi-Factor Models; Rainer Schwabe Book 1996 Springer-Verlag New York, Inc. 1996 Factor.Partition.Variance.addition.d

[復制鏈接]
樓主: 小費
31#
發(fā)表于 2025-3-26 23:19:46 | 只看該作者
32#
發(fā)表于 2025-3-27 01:16:12 | 只看該作者
33#
發(fā)表于 2025-3-27 05:57:10 | 只看該作者
Foundationse any inference. Therefore, we will consider the rather general situation in which the response is described by a linear model in which the response function . can be finitely parametrized in a linear way as introduced in Subsection 1.1. The performance of the statistical inference depends on the ex
34#
發(fā)表于 2025-3-27 09:58:19 | 只看該作者
35#
發(fā)表于 2025-3-27 14:10:28 | 只看該作者
Complete Product-type Interactionst first we treat the case of complete interactions which has been thoroughly investigated in the literature starting from . (1965). With respect to the methods of proof involved the present section is dedicated to the equivalence theorems which have been presented in Section 2.
36#
發(fā)表于 2025-3-27 19:12:13 | 只看該作者
Book 1996 leads to challenging optimization problems, even if the underlying relationship can be described by a linear model. Based on recent research, this book introduces the theory of optimum designs for complex models and develops general methods of reduction to marginal problems for large classes of models with relevant interaction structures.
37#
發(fā)表于 2025-3-27 22:16:15 | 只看該作者
978-0-387-94745-7Springer-Verlag New York, Inc. 1996
38#
發(fā)表于 2025-3-28 05:56:24 | 只看該作者
Optimum Designs for Multi-Factor Models978-1-4612-4038-9Series ISSN 0930-0325 Series E-ISSN 2197-7186
39#
發(fā)表于 2025-3-28 09:49:29 | 只看該作者
40#
發(fā)表于 2025-3-28 14:00:10 | 只看該作者
https://doi.org/10.1007/978-1-4612-4038-9Factor; Partition; Variance; addition; design; interaction; matrices; model; optimization; review
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 15:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
山阴县| 铜鼓县| 布尔津县| 柯坪县| 涟源市| 浪卡子县| 潼南县| 宣城市| 连平县| 阆中市| 湘阴县| 郎溪县| 东阿县| 宜川县| 瓮安县| 漠河县| 渑池县| 清涧县| 城固县| 图们市| 灵丘县| 高要市| 体育| 扶沟县| 高邑县| 监利县| 定兴县| 白玉县| 资溪县| 板桥市| 溧水县| 泽普县| 长阳| 星子县| 石城县| 天津市| 抚顺市| 贡山| 本溪市| 萍乡市| 鹿邑县|