找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Optimum Designs for Multi-Factor Models; Rainer Schwabe Book 1996 Springer-Verlag New York, Inc. 1996 Factor.Partition.Variance.addition.d

[復(fù)制鏈接]
樓主: 小費(fèi)
31#
發(fā)表于 2025-3-26 23:19:46 | 只看該作者
32#
發(fā)表于 2025-3-27 01:16:12 | 只看該作者
33#
發(fā)表于 2025-3-27 05:57:10 | 只看該作者
Foundationse any inference. Therefore, we will consider the rather general situation in which the response is described by a linear model in which the response function . can be finitely parametrized in a linear way as introduced in Subsection 1.1. The performance of the statistical inference depends on the ex
34#
發(fā)表于 2025-3-27 09:58:19 | 只看該作者
35#
發(fā)表于 2025-3-27 14:10:28 | 只看該作者
Complete Product-type Interactionst first we treat the case of complete interactions which has been thoroughly investigated in the literature starting from . (1965). With respect to the methods of proof involved the present section is dedicated to the equivalence theorems which have been presented in Section 2.
36#
發(fā)表于 2025-3-27 19:12:13 | 只看該作者
Book 1996 leads to challenging optimization problems, even if the underlying relationship can be described by a linear model. Based on recent research, this book introduces the theory of optimum designs for complex models and develops general methods of reduction to marginal problems for large classes of models with relevant interaction structures.
37#
發(fā)表于 2025-3-27 22:16:15 | 只看該作者
978-0-387-94745-7Springer-Verlag New York, Inc. 1996
38#
發(fā)表于 2025-3-28 05:56:24 | 只看該作者
Optimum Designs for Multi-Factor Models978-1-4612-4038-9Series ISSN 0930-0325 Series E-ISSN 2197-7186
39#
發(fā)表于 2025-3-28 09:49:29 | 只看該作者
40#
發(fā)表于 2025-3-28 14:00:10 | 只看該作者
https://doi.org/10.1007/978-1-4612-4038-9Factor; Partition; Variance; addition; design; interaction; matrices; model; optimization; review
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 15:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
裕民县| 巴林右旗| 卢龙县| 平陆县| 华亭县| 阿拉善左旗| 临海市| 永顺县| 太湖县| 昌平区| 独山县| 杨浦区| 凤凰县| 山西省| 九寨沟县| 武鸣县| 铜梁县| 庆元县| 东宁县| 濮阳县| 三台县| 文水县| 手游| 大方县| 木里| 富阳市| 呼图壁县| 桦川县| 思茅市| 江北区| 平顺县| 林口县| 柯坪县| 远安县| 九台市| 广饶县| 达孜县| 那曲县| 内乡县| 裕民县| 陇西县|