找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Optimization, Variational Analysis and Applications; IFSOVAA-2020, Varana Vivek Laha,Pierre Maréchal,S. K. Mishra Conference proceedings 20

[復(fù)制鏈接]
樓主: 尤指植物
21#
發(fā)表于 2025-3-25 06:09:10 | 只看該作者
J.-P. Dussault,M. Haddou,T. Migotit words in tweets) are greatly affected by the sparsity of the short tweet texts and the low co-occurrence rates of hashtags in tweets. Meanwhile, semantically related hashtags but using different text-expressions may show similar temporal patterns (i.e., the frequencies of hashtag usages changing
22#
發(fā)表于 2025-3-25 08:13:45 | 只看該作者
23#
發(fā)表于 2025-3-25 12:29:19 | 只看該作者
Nidhi Sharma,Jaya Bisht,S. K. Mishran (NMF) based methods have been proved to be effective in the task of community detection. However, real-world networks could be noisy and existing NMF based community detection methods are sensitive to the outliers and noise due to the utilization of the squared loss function to measure the quality
24#
發(fā)表于 2025-3-25 16:25:01 | 只看該作者
25#
發(fā)表于 2025-3-25 21:57:37 | 只看該作者
26#
發(fā)表于 2025-3-26 03:03:09 | 只看該作者
27#
發(fā)表于 2025-3-26 08:05:36 | 只看該作者
28#
發(fā)表于 2025-3-26 10:13:12 | 只看該作者
Walter Cedric Simo Tao Lee) within the allocated budget whose initial activation leads to the maximum number of influenced nodes. In reality, the influence probability between two users depends upon the context (i.e., tags). However, existing studies on this problem do not consider the tag specific influence probability. To
29#
發(fā)表于 2025-3-26 16:38:46 | 只看該作者
Vivek Laha,Rahul Kumar,Harsh Narayan Singh,S. K. Mishra) within the allocated budget whose initial activation leads to the maximum number of influenced nodes. In reality, the influence probability between two users depends upon the context (i.e., tags). However, existing studies on this problem do not consider the tag specific influence probability. To
30#
發(fā)表于 2025-3-26 17:16:43 | 只看該作者
Balendu Bhooshan Upadhyay,Priyanka Mishratagged events. These event-traces often manifest in hidden (possibly overlapping) communities of users with similar interests. Inferring these implicit communities is crucial for forming user profiles for improvements in recommendation and prediction tasks. Given only time-stamped geo-tagged traces
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 09:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
霍山县| 南平市| 昂仁县| 宜章县| 明水县| 沙坪坝区| 南漳县| 石渠县| 沾化县| 巴里| 陇南市| 七台河市| 剑川县| 潮州市| 太仆寺旗| 新巴尔虎右旗| 肇庆市| 合作市| 彩票| 连城县| 花垣县| 金寨县| 榆林市| 留坝县| 池州市| 铜陵市| 北京市| 昌乐县| 本溪| 梨树县| 玉树县| 城口县| 康乐县| 民勤县| 盖州市| 郯城县| 云南省| 台江县| 敦煌市| 定州市| 朝阳市|