找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Optimal Control of Partial Differential Equations; International Confer Karl-Heinz Hoffmann,Günter Leugering,Stiftung Caes Conference proce

[復(fù)制鏈接]
查看: 46113|回復(fù): 61
樓主
發(fā)表于 2025-3-21 17:30:21 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Optimal Control of Partial Differential Equations
副標(biāo)題International Confer
編輯Karl-Heinz Hoffmann,Günter Leugering,Stiftung Caes
視頻videohttp://file.papertrans.cn/703/702836/702836.mp4
叢書名稱International Series of Numerical Mathematics
圖書封面Titlebook: Optimal Control of Partial Differential Equations; International Confer Karl-Heinz Hoffmann,Günter Leugering,Stiftung Caes Conference proce
出版日期Conference proceedings 1999
關(guān)鍵詞Control theory; Optimal control; PDEs; Smart Materials; algorithm; modeling; numerical analysis; partial di
版次1
doihttps://doi.org/10.1007/978-3-0348-8691-8
isbn_softcover978-3-0348-9731-0
isbn_ebook978-3-0348-8691-8Series ISSN 0373-3149 Series E-ISSN 2296-6072
issn_series 0373-3149
copyrightSpringer Basel AG 1999
The information of publication is updating

書目名稱Optimal Control of Partial Differential Equations影響因子(影響力)




書目名稱Optimal Control of Partial Differential Equations影響因子(影響力)學(xué)科排名




書目名稱Optimal Control of Partial Differential Equations網(wǎng)絡(luò)公開度




書目名稱Optimal Control of Partial Differential Equations網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Optimal Control of Partial Differential Equations被引頻次




書目名稱Optimal Control of Partial Differential Equations被引頻次學(xué)科排名




書目名稱Optimal Control of Partial Differential Equations年度引用




書目名稱Optimal Control of Partial Differential Equations年度引用學(xué)科排名




書目名稱Optimal Control of Partial Differential Equations讀者反饋




書目名稱Optimal Control of Partial Differential Equations讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:01:05 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:16:29 | 只看該作者
978-3-0348-9731-0Springer Basel AG 1999
地板
發(fā)表于 2025-3-22 05:17:22 | 只看該作者
5#
發(fā)表于 2025-3-22 09:21:46 | 只看該作者
6#
發(fā)表于 2025-3-22 13:55:57 | 只看該作者
International Series of Numerical Mathematicshttp://image.papertrans.cn/o/image/702836.jpg
7#
發(fā)表于 2025-3-22 19:51:28 | 只看該作者
https://doi.org/10.1007/978-3-0348-8691-8Control theory; Optimal control; PDEs; Smart Materials; algorithm; modeling; numerical analysis; partial di
8#
發(fā)表于 2025-3-22 22:27:59 | 只看該作者
State Constrained Optimal Control for some Quasilinear Parabolic Equations,ll as on the state. The distributed control can appear in all the coefficients of the operator. State constraints of integral type and also pointwise in time are considered. Our main interest is the derivation of the first order optimality conditions. Finally, an application to exact controllability in finite dimensional subspaces is given.
9#
發(fā)表于 2025-3-23 01:27:45 | 只看該作者
Controllability Property for the Navier-Stokes Equations,rollability of the 3D Navier-Stokes equations are obtained when the Navier-Stokes equations are supplied with periodic boundary conditions (i.e. these equations are defined on torus II), a control is distributed and it is concentrated in a subdomain of II.
10#
發(fā)表于 2025-3-23 08:54:55 | 只看該作者
Shape Sensitivity and Large Deformation of the Domain for Norton-Hoff Flows,e weak-solution of Norton-Hoff problem with respect to the domain and the shape-differentiability of the energy functional..From the so-called Shape Differential Equation, we prove the existence of a virtual large deformation of the domain that increase the energy functional.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 03:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安宁市| 连江县| 曲阜市| 平邑县| 咸丰县| 奉新县| 同心县| 铜鼓县| 绥德县| 揭西县| 扎鲁特旗| 阿尔山市| 宜宾市| 巴彦县| 咸丰县| 潮安县| 裕民县| 惠东县| 富川| 满城县| 宁武县| 韶关市| 仁寿县| 平塘县| 江阴市| 西藏| 临西县| 肃宁县| 时尚| 濉溪县| 鸡泽县| 安阳市| 集安市| 剑川县| 竹北市| 定南县| 青田县| 金山区| 云阳县| 陆河县| 苍南县|