找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Operator and Matrix Theory, Function Spaces, and Applications; International Worksh Marek Ptak,Hugo J. Woerdeman,Micha? Wojtylak Conference

[復(fù)制鏈接]
樓主: Intermediary
41#
發(fā)表于 2025-3-28 16:16:12 | 只看該作者
42#
發(fā)表于 2025-3-28 22:05:08 | 只看該作者
43#
發(fā)表于 2025-3-29 01:28:25 | 只看該作者
Maximal Noncompactness of Singular Integral Operators on , Spaces with Some Khvedelidze Weights,. We consider the singular integral operator . with constant coefficients ., where . is the Cauchy singular integral operator over .. We provide a detailed proof of the maximal noncompactness of the operator . on . spaces with the Khvedelidze weights . satisfying .. This result was announced by Naum
44#
發(fā)表于 2025-3-29 07:03:02 | 只看該作者
45#
發(fā)表于 2025-3-29 09:47:50 | 只看該作者
46#
發(fā)表于 2025-3-29 11:39:43 | 只看該作者
47#
發(fā)表于 2025-3-29 19:25:03 | 只看該作者
On de Finetti-Type Theorems,uences of two-point valued exchangeable random variables is obtained by randomization of the binomial distribution. This result has since found several generalizations both in classical and noncommutative settings. In this paper, we discuss a series of recent results that extend de Finetti’s theorem
48#
發(fā)表于 2025-3-29 20:16:24 | 只看該作者
49#
發(fā)表于 2025-3-30 03:46:38 | 只看該作者
Conference proceedings 2024bert transform, small rank perturbations, spectral constants, Banach-Lie groupoids, reproducing kernels, and the Kippenhahn curve. The volume includes contributions by a number of the world‘s leading experts and can therefore be used as an introduction to the currently active research areas in operator theory.
50#
發(fā)表于 2025-3-30 05:23:57 | 只看該作者
Commuting Toeplitz Operators and Moment Maps on Cartan Domains of Type III,ators. This leads to a natural generalization of known results for the unit disk. We also compute spectral integral formulas for the Toeplitz operators corresponding to the Abelian Elliptic and Parabolic cases.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 18:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安乡县| 抚顺县| 龙胜| 武邑县| 通江县| 西昌市| 罗田县| 灵石县| 乌拉特中旗| 尉犁县| 新巴尔虎右旗| 河北区| 盐亭县| 通山县| 英超| 绥化市| 阳江市| 定兴县| 柳河县| 偏关县| 若尔盖县| 定南县| 怀宁县| 精河县| 黑河市| 乐亭县| 西畴县| 兴化市| 西华县| 米泉市| 肃南| 武平县| 剑川县| 时尚| 唐河县| 广水市| 姜堰市| 荆州市| 金塔县| 四平市| 哈巴河县|