找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Operator Theory and Differential Equations; Anatoly G. Kusraev,Zhanna D. Totieva Conference proceedings 2021 The Editor(s) (if applicable)

[復(fù)制鏈接]
樓主: complicated
31#
發(fā)表于 2025-3-27 00:56:28 | 只看該作者
,On the Brezis–Lieb Lemma and Its Extensions,hich the Brezis–Lieb lemma holds true. This gives also a net-version of the Brezis–Lieb lemma in .. for .?∈?[1, .). We discuss an operator version of the Brezis–Lieb lemma in certain convergence vector lattices.
32#
發(fā)表于 2025-3-27 04:53:08 | 只看該作者
33#
發(fā)表于 2025-3-27 06:36:39 | 只看該作者
Global Boundedness of Solutions of Continuous Social Stratification Model,y. We first obtain spatially homogeneous solutions of the problem. Next we employ the comparison theorems for nonlinear parabolic equations to derive sufficient conditions of global boundedness and blow up for the solutions which correspond to spatially inhomogeneous initial data. Finally we perform
34#
發(fā)表于 2025-3-27 10:45:14 | 只看該作者
35#
發(fā)表于 2025-3-27 13:36:33 | 只看該作者
36#
發(fā)表于 2025-3-27 18:09:51 | 只看該作者
37#
發(fā)表于 2025-3-28 00:58:40 | 只看該作者
38#
發(fā)表于 2025-3-28 05:55:31 | 只看該作者
Spectral Properties of Killing Vector Fields of Constant Length and Bounded Killing Vector Fields,zations on Riemannian manifolds. One of the main result is the following: If . is a Lie algebra of Killing vector fields on a given Riemannian manifold (., .), and . has constant length on (., .), then the linear operator . has a pure imaginary spectrum (Nikonorov, J. Geom. Phys. 145 (2019), 103485)
39#
發(fā)表于 2025-3-28 07:08:32 | 只看該作者
40#
發(fā)表于 2025-3-28 10:54:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乳源| 老河口市| 滨州市| 乐东| 宣武区| 汤阴县| 聂荣县| 钦州市| 剑川县| 巴南区| 虞城县| 通河县| 贵溪市| 霸州市| 区。| 封丘县| 太仆寺旗| 长子县| 泽普县| 合肥市| 阳原县| 武功县| 金平| 洞头县| 玛沁县| 建昌县| 栖霞市| 彩票| 利辛县| 眉山市| 宣化县| 武清区| 抚州市| 海安县| 大关县| 呼和浩特市| 高邮市| 江安县| 海淀区| 南宫市| 博爱县|