找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Operator Semigroups Meet Complex Analysis, Harmonic Analysis and Mathematical Physics; Wolfgang Arendt,Ralph Chill,Yuri Tomilov Conference

[復制鏈接]
樓主: 教條
31#
發(fā)表于 2025-3-27 00:06:16 | 只看該作者
,Generation of Subordinated Holomorphic Semigroups via Yosida’s Theorem,. is the generator of a holomorphic C.-semigroup on a Banach space, bounded on .. Such estimates are of value, in particular, in approximation theory of operator semigroups. As a corollary, weobtain a new proof of the fact that . generates a holomorphic semigroup whenever ?. does, established recent
32#
發(fā)表于 2025-3-27 03:35:42 | 只看該作者
33#
發(fā)表于 2025-3-27 08:04:17 | 只看該作者
34#
發(fā)表于 2025-3-27 10:28:07 | 只看該作者
35#
發(fā)表于 2025-3-27 14:17:24 | 只看該作者
36#
發(fā)表于 2025-3-27 18:24:17 | 只看該作者
Dichotomy Results for Norm Estimates in Operator Semigroups,The results in this survey indicate that the quantitative behaviour of the semigroup at the origin provides additional qualitative information, such as uniform continuity or analyticity.
37#
發(fā)表于 2025-3-28 00:42:58 | 只看該作者
Convergence of the Dirichlet-to-Neumann Operator on Varying Domains,We prove resolvent convergence for the Dirichlet-to-Neumann operator on domains which are uniformly starshaped with respect to a ball, when the domains converge appropriately.
38#
發(fā)表于 2025-3-28 05:00:03 | 只看該作者
A Banach Algebra Approach to the Weak Spectral Mapping Theorem for Locally Compact Abelian Groups,We give a general version of the weak spectral mapping theorem for non-quasianalytic representations of locally compact abelian groups which are weakly continuous in the sense of Arveson, based on a Banach algebra approach.
39#
發(fā)表于 2025-3-28 09:06:21 | 只看該作者
Regularity Properties of Sectorial Operators: Counterexamples and Open Problems,We give a survey on the different regularity properties of sectorial operators on Banach spaces. We present the main results and open questions in the theory and then concentrate on the known methods to construct various counterexamples.
40#
發(fā)表于 2025-3-28 11:47:27 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 04:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
汾西县| 莱西市| 万州区| 松桃| 十堰市| 太仆寺旗| 宣威市| 远安县| 托克逊县| 拉孜县| 聂拉木县| 郎溪县| 安泽县| 甘肃省| 松潘县| 长海县| 斗六市| 霸州市| 新源县| 夹江县| 唐海县| 枣阳市| 噶尔县| 吉隆县| 南木林县| 罗甸县| 台湾省| 上饶市| 龙江县| 万安县| 招远市| 海伦市| 九江县| 黎川县| 永清县| 壤塘县| 颍上县| 栖霞市| 东乡族自治县| 宁津县| 清原|