找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Operator Commutation Relations; Commutation Relation Palle E. T. J?rgensen,Robert T. Moore Book 1984 D. Reidel Publishing Company, Dordrech

[復(fù)制鏈接]
樓主: 使沮喪
31#
發(fā)表于 2025-3-27 00:26:06 | 只看該作者
32#
發(fā)表于 2025-3-27 01:19:15 | 只看該作者
33#
發(fā)表于 2025-3-27 07:16:00 | 只看該作者
34#
發(fā)表于 2025-3-27 13:23:14 | 只看該作者
35#
發(fā)表于 2025-3-27 15:27:03 | 只看該作者
Exponentiation and Bounded Perturbation of Operator Lie Algebrasresent chapter contains two exponentiation theorems which are improvements upon results due to the co-authors. It also contains theorems on perturbations of Lie algebras of unbounded operators. These results are entirely new.
36#
發(fā)表于 2025-3-27 19:24:32 | 只看該作者
37#
發(fā)表于 2025-3-28 00:39:24 | 只看該作者
Rigorous Analysis of Some Commutator Identities for Physical Observablesommutation theory with several equivalent conditions introduced by Kato [Kt 1] in his discussion of the canonical commutation relations. We indicate that generalizations of Kato’s conditions can be applied to a number of other commutation-theoretic matters that play an important role in mathematical
38#
發(fā)表于 2025-3-28 04:01:47 | 只看該作者
39#
發(fā)表于 2025-3-28 07:39:01 | 只看該作者
The Finite-Dimensional Commutation Conditionetc. (Here A and B are endomorphisms of a dense domain D in a Banach or locally convex space E.) Below in Section 2A we distinguish several technically different ways in which this condition enters into the development. Section 2B presents examples of differential operators which satisfy the condition.
40#
發(fā)表于 2025-3-28 12:01:08 | 只看該作者
Domain Regularity and Semigroup Commutation Relationsnsional spaces E. or D for which the exponentials in (l) can still be interpreted reasonably in terms of other endomorphisms of these spaces. As is well-known (and essentially recapitulated in Chapter 2), the standard matrix arguments using rearrangements of power series apply equally well to bounded Banach space operators A, B.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 17:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
象山县| 黄大仙区| 河间市| 大田县| 若羌县| 洛南县| 贺州市| 晴隆县| 肥西县| 黎平县| 噶尔县| 高平市| 伊宁县| 宁陕县| 赤壁市| 潮安县| 长岭县| 桑日县| 蕲春县| 剑河县| 克东县| 镇雄县| 北宁市| 海南省| 屯留县| 安远县| 平湖市| 德安县| 景泰县| 夏邑县| 渭南市| 衢州市| 达州市| 武强县| 济源市| 皮山县| 徐州市| 胶南市| 宣汉县| 巫溪县| 咸阳市|