找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Operator Algebras and Applications; The Abel Symposium 2 Toke M. Carlsen,Nadia S. Larsen,Christian Skau Conference proceedings 2016 Springe

[復(fù)制鏈接]
樓主: Lipase
11#
發(fā)表于 2025-3-23 10:51:53 | 只看該作者
,C?-Tensor Categories and Subfactors for Totally Disconnected Groups,has the Haagerup property or property?(T), and when . is weakly amenable. When . is compactly generated, we prove that . is essentially equivalent to the planar algebra associated by Jones and Burstein to a group acting on a locally finite bipartite graph. We then concretely realize . as the categor
12#
發(fā)表于 2025-3-23 17:33:52 | 只看該作者
13#
發(fā)表于 2025-3-23 20:54:30 | 只看該作者
14#
發(fā)表于 2025-3-23 22:43:41 | 只看該作者
15#
發(fā)表于 2025-3-24 03:00:40 | 只看該作者
,C?-Algebras Associated with Algebraic Actions,algebraic endomorphisms of a compact abelian group—or, dually, of a discrete abelian group. In our survey we do not try to describe the entire scope of the methods and results obtained in the original papers, but we concentrate on the important thread coming from the action of the multiplicative sem
16#
發(fā)表于 2025-3-24 07:43:43 | 只看該作者
17#
發(fā)表于 2025-3-24 12:21:20 | 只看該作者
18#
發(fā)表于 2025-3-24 16:58:17 | 只看該作者
,Semigroup C?-Algebras, have been studied for some time, but it was only recently that several new connections and results were discovered, triggered by particularly interesting examples from number theory and group theory. We explain the construction of semigroup C*-algebras, introduce the basic underlying algebraic obje
19#
發(fā)表于 2025-3-24 22:45:26 | 只看該作者
20#
發(fā)表于 2025-3-25 02:23:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 22:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
尤溪县| 安宁市| 广西| 崇文区| 芷江| 新田县| 高青县| 闵行区| 织金县| 博兴县| 扬州市| 榆社县| 阿坝| 保山市| 九江县| 泰兴市| 贡嘎县| 武城县| 南和县| 鹿邑县| 安岳县| 登封市| 花莲县| 内黄县| 汝城县| 渝中区| 开原市| 乐东| 大埔区| 芜湖县| 宁明县| 西盟| 屏边| 右玉县| 龙泉市| 长丰县| 壶关县| 临沭县| 湘阴县| 什邡市| 武山县|