找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: One-Factorizations; W. D. Wallis Book 1997 Springer Science+Business Media Dordrecht 1997 Matching.graph theory.graphs.mathematics.combina

[復(fù)制鏈接]
樓主: decoction
31#
發(fā)表于 2025-3-27 00:19:53 | 只看該作者
32#
發(fā)表于 2025-3-27 02:00:05 | 只看該作者
Walks, Paths and Cycles,. A . is a walk in which no edge is repeated. A . is a walk in which no vertex is repeated; the . of a path is its number of edges. A walk is . when the first and last vertices, .. and .., are equal. A . of length . is a closed simple walk of length ., . ≥ 3, in which the vertices .., .., ..., x. are all different.
33#
發(fā)表于 2025-3-27 08:29:36 | 只看該作者
34#
發(fā)表于 2025-3-27 11:01:55 | 只看該作者
35#
發(fā)表于 2025-3-27 16:14:09 | 只看該作者
36#
發(fā)表于 2025-3-27 21:12:14 | 只看該作者
37#
發(fā)表于 2025-3-28 00:36:57 | 只看該作者
38#
發(fā)表于 2025-3-28 04:34:24 | 只看該作者
Graphs,Any reader of this book will have some acquaintance with graph theory. However it seems advisable to have an introductory chapter, not only for completeness, but also because writers in this area differ on fundamental definitions: it is necessary to establish our version of the terminology.
39#
發(fā)表于 2025-3-28 08:44:26 | 只看該作者
One-Factors and One-Factorizations,If . is any graph, then a . or . of . is a subgraph with vertex-set . (.). A . of . is a set of factors of . which are pairwise . no two have a common edge —and whose union is all of ..
40#
發(fā)表于 2025-3-28 12:50:33 | 只看該作者
Orthogonal One-Factorizations,There are a number of applications of one-factorizations in the theory of combinatorial designs. In general this topic is too big to discuss here, but we shall explore a couple of examples. In this chapter we look at the applications concerning Latin squares; one-factorizations and block designs are discussed in Chapter 9.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 14:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
华亭县| 郯城县| 宜君县| 蒙山县| 阿克陶县| 竹北市| 新宾| 内乡县| 太仓市| 盐亭县| 临安市| 蒙自县| 德钦县| 海丰县| 来安县| 鲁甸县| 大安市| 济源市| 怀来县| 大厂| 河东区| 濉溪县| 大方县| 屯留县| 平原县| 平顶山市| 宜川县| 承德县| 保德县| 涟水县| 沁阳市| 甘泉县| 白玉县| 沧源| 西藏| 比如县| 铜山县| 栾城县| 青田县| 剑河县| 甘谷县|