找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: On the Problem of Plateau / Subharmonic Functions; Tibor Radó Book 1971 Springer Science+Business Media New York 1971 Functions.Plateausch

[復(fù)制鏈接]
查看: 10342|回復(fù): 52
樓主
發(fā)表于 2025-3-21 17:54:38 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)On the Problem of Plateau / Subharmonic Functions
編輯Tibor Radó
視頻videohttp://file.papertrans.cn/702/701268/701268.mp4
叢書(shū)名稱(chēng)Ergebnisse der Mathematik und Ihrer Grenzgebiete. 1. Folge
圖書(shū)封面Titlebook: On the Problem of Plateau / Subharmonic Functions;  Tibor Radó Book 1971 Springer Science+Business Media New York 1971 Functions.Plateausch
描述A convex function f may be called sublinear in the following sense; if a linear function l is ::=: j at the boundary points of an interval, then l:> j in the interior of that interval also. If we replace the terms interval and linear junction by the terms domain and harmonic function, we obtain a statement which expresses the characteristic property of subharmonic functions of two or more variables. This ge- neralization, formulated and developed by F. RIEsz, immediately at- tracted the attention of many mathematicians, both on account of its intrinsic interest and on account of the wide range of its applications. If f (z) is an analytic function of the complex variable z = x + i y. then If (z) I is subharmonic. The potential of a negative mass-distribu- tion is subharmonic. In differential geometry, surfaces of negative curvature and minimal surfaces can be characterized in terms of sub- harmonic functions. The idea of a subharmonic function leads to significant applications and interpretations in the fields just referred to, and· conversely, every one of these fields is an apparently in- exhaustible source of new theorems on subharmonic functions, either by analogy or by direct i
出版日期Book 1971
關(guān)鍵詞Functions; Plateausches Problem; Problem of Plateau; Subharmonische Funktion; function; minimum; subharmon
版次1
doihttps://doi.org/10.1007/978-3-642-65236-3
isbn_softcover978-3-540-05479-5
isbn_ebook978-3-642-65236-3
copyrightSpringer Science+Business Media New York 1971
The information of publication is updating

書(shū)目名稱(chēng)On the Problem of Plateau / Subharmonic Functions影響因子(影響力)




書(shū)目名稱(chēng)On the Problem of Plateau / Subharmonic Functions影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)On the Problem of Plateau / Subharmonic Functions網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)On the Problem of Plateau / Subharmonic Functions網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)On the Problem of Plateau / Subharmonic Functions被引頻次




書(shū)目名稱(chēng)On the Problem of Plateau / Subharmonic Functions被引頻次學(xué)科排名




書(shū)目名稱(chēng)On the Problem of Plateau / Subharmonic Functions年度引用




書(shū)目名稱(chēng)On the Problem of Plateau / Subharmonic Functions年度引用學(xué)科排名




書(shū)目名稱(chēng)On the Problem of Plateau / Subharmonic Functions讀者反饋




書(shū)目名稱(chēng)On the Problem of Plateau / Subharmonic Functions讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:57:48 | 只看該作者
https://doi.org/10.1007/978-3-642-65236-3Functions; Plateausches Problem; Problem of Plateau; Subharmonische Funktion; function; minimum; subharmon
板凳
發(fā)表于 2025-3-22 02:04:24 | 只看該作者
地板
發(fā)表于 2025-3-22 05:55:10 | 只看該作者
Representation of subharmonic functions in terms of potentials,suitable for our purposes. Let v becontinuous in a domain G together with its derivatives of the firstand second order. Take a region G’ + B’ in G, such that B’ consistsof a finite number of non-intersecting smooth . curves.
5#
發(fā)表于 2025-3-22 11:22:04 | 只看該作者
6#
發(fā)表于 2025-3-22 16:05:08 | 只看該作者
7#
發(fā)表于 2025-3-22 17:47:43 | 只看該作者
Minimal surfaces in the small,Given a surface.it is convenient to use vector notation and write simply .where . denotes the vector with components x (u, v) , y (u, v) ,z(u, v).
8#
發(fā)表于 2025-3-23 00:44:47 | 只看該作者
The non-parametric problem,The problem of . in the non-parametric form asksfor a minimal surface bounded by a given curve and represented as awhole by an equation of the form z = z (x, y) .
9#
發(fā)表于 2025-3-23 02:14:32 | 只看該作者
10#
發(fā)表于 2025-3-23 07:09:48 | 只看該作者
The simultaneous problem in the parametric form. Generalizations,This problem has been investigated in the following statement.Given, in the .-space, a . curve Γ*, consider all the continuoussurfaces, of the type of the circular disc (see I.8), bounded by Γ*, andsuppose that the greatest lower bound a (Γ*) of their areas is finite... (see III.5), ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 23:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
海兴县| 丹东市| 临泉县| 玉门市| 亚东县| 新乐市| 古田县| 黎城县| 弥勒县| 扎鲁特旗| 西吉县| 汝南县| 青龙| 泽普县| 胶南市| 达孜县| 山东| 高唐县| 都江堰市| 阿城市| 垫江县| 旬阳县| 布尔津县| 安图县| 阿巴嘎旗| 尉氏县| 会同县| 八宿县| 洛川县| 久治县| 肃南| 林周县| 荣昌县| 锦屏县| 偃师市| 星子县| 定南县| 凌源市| 通化县| 清苑县| 任丘市|