找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonparametric Bayesian Inference; Contributions by Jea Jean-Pierre Florens,Michel Mouchart Book 2024 The Editor(s) (if applicable) and The

[復(fù)制鏈接]
樓主: 馬用
31#
發(fā)表于 2025-3-26 23:40:10 | 只看該作者
32#
發(fā)表于 2025-3-27 03:04:22 | 只看該作者
Some Useful Properties of the Dirichlet Processess through independence relations between associated .-fields entails a nice description of the posterior distribution of the Dirichlet process at points where there is either no or at least one observation.
33#
發(fā)表于 2025-3-27 05:23:50 | 只看該作者
34#
發(fā)表于 2025-3-27 11:11:58 | 只看該作者
Nonparametric Competing Risks Models: Identification and Strong Consistency3)) are used to show the almost sure convergence of simple functionals of the predictable hazard measures and of the distributions of the latent or “fictitious” independent risks. These results entails the almost sure uniform convergence on the real line of the distributions of these independent risks.
35#
發(fā)表于 2025-3-27 17:34:36 | 只看該作者
Duration Model Bayesian Semi-parametric Approachrely random. We give some results on Gamma and Dirichlet distributions laws. In the specific case of Gamma process, we try to give some interpretation of classical results using Bayesian semi-parametric approach. As for the estimation of the nuisance parameter, we simply use an iterative expectation rule and a recurrence approach.
36#
發(fā)表于 2025-3-27 18:34:48 | 只看該作者
37#
發(fā)表于 2025-3-27 22:55:06 | 只看該作者
38#
發(fā)表于 2025-3-28 02:47:53 | 只看該作者
Survival Data with Explanatory Processes: A Full Nonparametric Bayesian Analysister is also obtained. These posterior distributions are computed for Beta processes and Gamma processes in the proportional hazards and multiplicative intensity models. The noninformative case provides a new likelihood for the parameters even in case of ties, contrary to the Cox likelihood.
39#
發(fā)表于 2025-3-28 07:39:41 | 只看該作者
40#
發(fā)表于 2025-3-28 10:49:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 21:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
芜湖县| 鄯善县| 开阳县| 句容市| 常德市| 定安县| 泸西县| 沐川县| 东方市| 山东省| 昌图县| 兖州市| 古丈县| 永泰县| 太湖县| 辽宁省| 游戏| 措美县| 霍山县| 巴林右旗| 厦门市| 贡觉县| 新沂市| 手机| 平安县| 平邑县| 无为县| 遂宁市| 鹰潭市| 九龙城区| 正安县| 布尔津县| 仲巴县| 泰兴市| 璧山县| 龙胜| 玉环县| 奇台县| 鸡东县| 安吉县| 遵义市|