找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Natural Language Processing and Chinese Computing; 13th National CCF Co Derek F. Wong,Zhongyu Wei,Muyun Yang Conference proceedings 2025 Th

[復(fù)制鏈接]
樓主: 使委屈
31#
發(fā)表于 2025-3-27 01:02:00 | 只看該作者
32#
發(fā)表于 2025-3-27 02:07:23 | 只看該作者
What is the?Best Model? Application-Driven Evaluation for?Large Language Models and industry as they generalize foundation models to various practical tasks in a prompt manner. To assist users in selecting the best model in practical application scenarios, i.e., choosing the model that meets the application requirements while minimizing cost, we introduce A-Eval, an applicatio
33#
發(fā)表于 2025-3-27 09:15:38 | 只看該作者
Sparse Mixture of?Experts Language Models Excel in?Knowledge Distillationn distilling large language models have primarily focused on loss functions and training methodologies, with limited attention given to structural improvements of student models. This is largely due to the challenges posed by cross-architecture distillation and the substantial computational resource
34#
發(fā)表于 2025-3-27 10:43:19 | 只看該作者
35#
發(fā)表于 2025-3-27 14:47:48 | 只看該作者
Reparameterization-Based Parameter-Efficient Fine-Tuning Methods for Large Language Models: A Systemning objectives to achieve unprecedented performance. To fully exploit the potential of LLMs, fine-tuning LLMs on specific downstream tasks is essential. However, traditional full fine-tuning methods pose significant computational challenges, prompting the emergence of Parameter-Efficient Fine-Tunin
36#
發(fā)表于 2025-3-27 21:28:38 | 只看該作者
37#
發(fā)表于 2025-3-27 22:21:50 | 只看該作者
38#
發(fā)表于 2025-3-28 04:54:57 | 只看該作者
39#
發(fā)表于 2025-3-28 06:50:27 | 只看該作者
FIRP: Faster LLM Inference via?Future Intermediate Representation Predictionnature of LLM decoding, which generates only a single token per forward propagation, fails to fully exploit the parallel computational power of GPUs, leading to considerable latency. To address this, we introduce a novel speculative decoding method named FIRP which generates multiple tokens instead
40#
發(fā)表于 2025-3-28 11:48:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 01:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
兴城市| 临漳县| 白山市| 昂仁县| 青阳县| 江永县| 成安县| 丰县| 博乐市| 宕昌县| 富宁县| 郴州市| 古交市| 凤翔县| 稻城县| 三明市| 泊头市| 长宁县| 乳山市| 柳江县| 承德市| 休宁县| 阿坝县| 桐乡市| 南充市| 丰台区| 博爱县| 巴楚县| 青岛市| 开远市| 肃宁县| 奉贤区| 唐河县| 砀山县| 虞城县| 资源县| 新丰县| 澄城县| 康平县| 安阳市| 梓潼县|