找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Natural Language Processing and Chinese Computing; 13th National CCF Co Derek F. Wong,Zhongyu Wei,Muyun Yang Conference proceedings 2025 Th

[復(fù)制鏈接]
樓主: 粘上
31#
發(fā)表于 2025-3-26 22:37:44 | 只看該作者
32#
發(fā)表于 2025-3-27 03:00:45 | 只看該作者
33#
發(fā)表于 2025-3-27 07:33:22 | 只看該作者
34#
發(fā)表于 2025-3-27 10:36:11 | 只看該作者
Enhancing Word-Level Completion for?Masked Language Model with?Multi-Model Fusionrocess of human translation and ensure the translation quality. Although significant progress has been made in the field, there may be multiple candidate words when models predict words. Multiple words make up a list of candidate words. We improve the existing model by determining the most credible
35#
發(fā)表于 2025-3-27 15:06:38 | 只看該作者
JumpLiteGCN: A Lightweight Approach to?Hierarchical Text Classificationsification methods often face dual constraints of efficiency and performance. To overcome these challenges, this study proposes a lightweight graph convolutional network model enhanced with jump connections (JumpLiteGCN). This significantly reduces the model’s complexity and computational costs by s
36#
發(fā)表于 2025-3-27 21:22:41 | 只看該作者
Enhancing Complex Causality Extraction via?Improved Subtask Interaction and?Knowledge Fusionthe best approach for the ECE task. However, existing fine-tuning based ECE methods cannot address all three key challenges in ECE simultaneously: 1)?., where multiple causal-effect pairs occur within a single sentence; 2)?., which involves modeling the mutual dependence between the two subtasks of
37#
發(fā)表于 2025-3-28 01:30:39 | 只看該作者
Mathematical Reasoning via?Multi-step Self Questioning and?Answering for?Small Language Modelsting works have tried to leverage the rationales of LLMs to train small language models (SLMs) for enhanced reasoning abilities, referred to as distillation. However, most existing distillation methods have not considered guiding the small models to solve problems progressively from simple to comple
38#
發(fā)表于 2025-3-28 02:07:12 | 只看該作者
39#
發(fā)表于 2025-3-28 09:52:58 | 只看該作者
Modeling Comparative Logical Relation with?Contrastive Learning for?Text Generation a table. Existing D2T works mainly focus on describing the superficial . among entities, while ignoring the deep ., such as A is better than B in a certain aspect with a corresponding opinion, which is quite common in our daily life. In this paper, we introduce a new D2T task named comparative logi
40#
發(fā)表于 2025-3-28 13:21:42 | 只看該作者
MANet: A Multiview Attention Network for?Automatic ICD Codingrbose nature of medical records. Currently, most methods employ deep neural networks to learn the representation of clinical notes from a single perspective. These single-view-based methods overlook the exploitation and fusion of multiview features to enhance the precision of ICD coding. In this pap
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 18:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
青铜峡市| 石景山区| 万盛区| 都昌县| 夏津县| 阿克陶县| 永善县| 卢龙县| 富民县| 历史| 南丹县| 梁山县| 大埔区| 黄平县| 嘉祥县| 朝阳区| 舟曲县| 都昌县| 于都县| 县级市| 康保县| 阜宁县| 陆河县| 张家口市| 榆社县| 扶余县| 上蔡县| 泽库县| 怀宁县| 凯里市| 霍林郭勒市| 乌拉特后旗| 张家港市| 渑池县| 高要市| 惠水县| 天祝| 定南县| 东乌珠穆沁旗| 濮阳县| 开平市|