找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Natural Language Processing and Chinese Computing; 13th National CCF Co Derek F. Wong,Zhongyu Wei,Muyun Yang Conference proceedings 2025 Th

[復(fù)制鏈接]
樓主: 紀(jì)念性
11#
發(fā)表于 2025-3-23 10:41:09 | 只看該作者
Chinese Personalized Commonsense Understanding and?Reasoning Based on?Curriculum-Learning BERT, GPT2, and BART with different structures. The experimental results show that the models trained using the curriculum-learning training framework are able to generate more diversified and personality-trait-compliant commonsense reasoning results.
12#
發(fā)表于 2025-3-23 16:54:13 | 只看該作者
13#
發(fā)表于 2025-3-23 20:30:40 | 只看該作者
14#
發(fā)表于 2025-3-24 00:36:11 | 只看該作者
ConFit: Contrastive Fine-Tuning of?Text-to-Text Transformer for?Relation Classificationd on their context. The latest trend for dealing with the task resorts to pre-trained language models (PLMs). It transforms the discriminative RC into a linguistics problem and fully induces the language knowledge PLMs derived from pre-training. Despite the visible progress, existing approaches hand
15#
發(fā)表于 2025-3-24 04:55:33 | 只看該作者
16#
發(fā)表于 2025-3-24 08:03:59 | 只看該作者
17#
發(fā)表于 2025-3-24 11:10:25 | 只看該作者
18#
發(fā)表于 2025-3-24 18:01:51 | 只看該作者
An Iterative Framework for?Document-Level Event Argument Extraction Assisted by?Long Short-Term Memot structure is complex. Most of the current methods are entity-based classification or generative frameworks, facing significant challenges when dealing with argument types that are not entities and handling complex event types. In this paper, we propose an iterative extraction framework for DEAE, w
19#
發(fā)表于 2025-3-24 23:04:28 | 只看該作者
20#
發(fā)表于 2025-3-25 02:27:14 | 只看該作者
Prompt Debiasing via?Causal Intervention for?Event Argument Extractionnarios. By formatting a fine-tuning task into a pre-training objective, prompt-based methods resolve the data scarce problem effectively. However, previous researches seldom investigate the discrepancy among different strategies on prompt formulation. In this work, we compare two kinds of prompts, n
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 19:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
林口县| 保靖县| 大渡口区| 浦江县| 云林县| 横峰县| 洛川县| 杭州市| 雷山县| 迁安市| 西城区| 怀远县| 东乌珠穆沁旗| 翼城县| 辰溪县| 老河口市| 珲春市| 汝城县| 旬邑县| 仁怀市| 灵寿县| 清徐县| 阳东县| 南漳县| 乐东| 兴山县| 寿宁县| 连云港市| 永泰县| 漠河县| 香港 | 光山县| 徐州市| 景泰县| 潮州市| 明光市| 孙吴县| 太湖县| 阳原县| 日照市| 新竹县|