找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical solution of Variational Inequalities by Adaptive Finite Elements; Franz-Theo Suttmeier Book 2008 Vieweg+Teubner Verlag | Springe

[復(fù)制鏈接]
查看: 17971|回復(fù): 52
樓主
發(fā)表于 2025-3-21 19:23:19 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Numerical solution of Variational Inequalities by Adaptive Finite Elements
編輯Franz-Theo Suttmeier
視頻videohttp://file.papertrans.cn/670/669262/669262.mp4
叢書名稱Advances in Numerical Mathematics
圖書封面Titlebook: Numerical solution of Variational Inequalities by Adaptive Finite Elements;  Franz-Theo Suttmeier Book 2008 Vieweg+Teubner Verlag | Springe
描述This work describes a general approach to a posteriori error estimation and adaptive mesh design for ?nite element models where the solution is subjected to inequality constraints. This is an extension to variational inequalities of the so-called Dual-Weighted-Residual method (DWR method) which is based on a variational formulation of the problem and uses global duality arguments for deriving weighted a posteriori error estimates with respect to arbitrary functionals of the error. In these estimates local residuals of the computed solution are multiplied by sensitivity factors which are obtained from a - merically computed dual solution. The resulting local error indicators are used in a feed-back process for generating economical meshes which are tailored - cording to the particular goal of the computation. This method is developed here for several model problems. Based on these examples, a general concept is proposed, which provides a systematic way of adaptive error control for problems stated in form of variational inequalities. F¨ ur Alexandra, Katharina und Merle Contents 1 Introduction 1 2 Models in elasto-plasticity 13 2. 1 Governing equations . . . . . . . . . . . . . . .
出版日期Book 2008
關(guān)鍵詞A Posteriori Fehlersch?tzung; A Priori Fehlersch?tzung; Adaptivit?t; Finite; Finite-Elemente-Methode; Var
版次1
doihttps://doi.org/10.1007/978-3-8348-9546-2
isbn_softcover978-3-8348-0664-2
isbn_ebook978-3-8348-9546-2Series ISSN 1616-2994
issn_series 1616-2994
copyrightVieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH, Wiesbaden 2008
The information of publication is updating

書目名稱Numerical solution of Variational Inequalities by Adaptive Finite Elements影響因子(影響力)




書目名稱Numerical solution of Variational Inequalities by Adaptive Finite Elements影響因子(影響力)學(xué)科排名




書目名稱Numerical solution of Variational Inequalities by Adaptive Finite Elements網(wǎng)絡(luò)公開度




書目名稱Numerical solution of Variational Inequalities by Adaptive Finite Elements網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Numerical solution of Variational Inequalities by Adaptive Finite Elements被引頻次




書目名稱Numerical solution of Variational Inequalities by Adaptive Finite Elements被引頻次學(xué)科排名




書目名稱Numerical solution of Variational Inequalities by Adaptive Finite Elements年度引用




書目名稱Numerical solution of Variational Inequalities by Adaptive Finite Elements年度引用學(xué)科排名




書目名稱Numerical solution of Variational Inequalities by Adaptive Finite Elements讀者反饋




書目名稱Numerical solution of Variational Inequalities by Adaptive Finite Elements讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:05:15 | 只看該作者
Book 2008ted to inequality constraints. This is an extension to variational inequalities of the so-called Dual-Weighted-Residual method (DWR method) which is based on a variational formulation of the problem and uses global duality arguments for deriving weighted a posteriori error estimates with respect to
板凳
發(fā)表于 2025-3-22 02:04:00 | 只看該作者
地板
發(fā)表于 2025-3-22 07:03:09 | 只看該作者
The dual-weighted-residual method,chemes, is known. We shall demonstrate in the subsequent chapters, that this technique to derive weighted . estimators can nevertheless be carried over to the case of inequalities by carefully adapting the duality argument.
5#
發(fā)表于 2025-3-22 09:18:48 | 只看該作者
6#
發(fā)表于 2025-3-22 14:11:56 | 只看該作者
Time-dependent problems,th time interval .=(0,.). Furthermore the initial state is given by .=u. and homogeneous boundary condition .=0 are prescribed on ?Ω. Such problems arise in the field of ., for instance for describing the behaviour of American options (see, e.g., Seydel [61]).
7#
發(fā)表于 2025-3-22 19:50:07 | 只看該作者
8#
發(fā)表于 2025-3-23 00:00:16 | 只看該作者
9#
發(fā)表于 2025-3-23 04:19:57 | 只看該作者
10#
發(fā)表于 2025-3-23 07:05:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 01:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
深泽县| 肥西县| 韶关市| 大竹县| 共和县| 长治县| 建始县| 桑日县| 海林市| 大宁县| 全椒县| 青州市| 长葛市| 永新县| 舞阳县| 宁安市| 永靖县| 若尔盖县| 哈密市| 泸水县| 大竹县| 无极县| 贵港市| 商都县| 长白| 静安区| 永济市| 桂阳县| 临江市| 茂名市| 丰县| 开阳县| 涞源县| 万年县| 兴安盟| 建始县| 堆龙德庆县| SHOW| 山西省| 福泉市| 彰化县|