找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Verification Methods and Computer-Assisted Proofs for Partial Differential Equations; Mitsuhiro T. Nakao,Michael Plum,Yoshitaka

[復(fù)制鏈接]
樓主: antibody
31#
發(fā)表于 2025-3-26 22:10:52 | 只看該作者
32#
發(fā)表于 2025-3-27 04:15:33 | 只看該作者
Numerical Verification Methods and Computer-Assisted Proofs for Partial Differential Equations
33#
發(fā)表于 2025-3-27 08:45:54 | 只看該作者
34#
發(fā)表于 2025-3-27 09:29:04 | 只看該作者
Infinite-Dimensional Newton-Type Methodpplying the same principle as in Chaps. 1 and 2. After that, we confirm the existence of solutions by proving the contractility of the infinite-dimensional Newton-like operator with a residual form. Note that a projection into a finite-dimensional subspace and constructive error estimates of the projection play important and essential roles.
35#
發(fā)表于 2025-3-27 17:39:17 | 只看該作者
Basic Principle of the Verificationl improvements have since been made. This method consists of a projection and error estimations by the effective use of the compactness property of the relevant operator, and it can be represented in a rather generalized form in the examples below.
36#
發(fā)表于 2025-3-27 20:52:04 | 只看該作者
37#
發(fā)表于 2025-3-28 01:29:43 | 只看該作者
38#
發(fā)表于 2025-3-28 04:06:41 | 只看該作者
Other Problem Typesf second-order elliptic boundary value problems, where the linearized operator . lacks symmetry, whence a norm bound for .. cannot be computed via the spectrum of . or ....In this chapter we concentrate on the main ideas and partially will be a bit less extensive with technical details.
39#
發(fā)表于 2025-3-28 08:30:48 | 只看該作者
Eigenvalue Bounds for Self-Adjoint Eigenvalue Problemssical application is quantum physics, but also other fields like electro-dynamics (including optics) or statistical mechanics are governed by partial differential operators and related eigenvalue problems.
40#
發(fā)表于 2025-3-28 12:50:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 17:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
都安| 旅游| 江阴市| 长丰县| 张家港市| 江油市| 峨山| 长武县| 正安县| 上虞市| 枞阳县| 城市| 桐柏县| 钦州市| 柳林县| 延长县| 长岛县| 普安县| 湖北省| 孙吴县| 丰都县| 湘乡市| 江达县| 闵行区| 宜阳县| 彭水| 澎湖县| 西畴县| 石景山区| 当涂县| 武城县| 晋宁县| 南安市| 修水县| 阜南县| 五河县| 张家川| 大埔县| 横山县| 报价| 尚义县|