找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Semigroups; IMNS 2018 Valentina Barucci,Scott Chapman,Ralf Fr?berg Book 2020 The Editor(s) (if applicable) and The Author(s), und

[復(fù)制鏈接]
樓主: 烏鴉
11#
發(fā)表于 2025-3-23 10:48:31 | 只看該作者
Symmetric (Not Complete Intersection) Semigroups Generated by Six Elements,We consider symmetric (not complete intersection) numerical semigroups .., generated by a set of six positive integers {.., …, ..}, ., and derive inequalities for degrees of syzygies of such semigroups and find the lower bound for their Frobenius numbers. We show that this bound may be strengthened if .. satisfies the Watanabe lemma.
12#
發(fā)表于 2025-3-23 14:59:28 | 只看該作者
Arf Numerical Semigroups with Multiplicity 9 and 10,In this work we give a new characterization of Arf numerical semigroups and use it to parametrize Arf numerical semigroups with multiplicity 9 and 10.
13#
發(fā)表于 2025-3-23 19:55:58 | 只看該作者
14#
發(fā)表于 2025-3-23 22:47:53 | 只看該作者
15#
發(fā)表于 2025-3-24 03:00:38 | 只看該作者
Torsion in Tensor Products over One-Dimensional Domains,Over a one-dimensional Gorenstein local domain ., let . be the endomorphism ring of the maximal of ., viewed as a subring of the integral closure .. If there exist finitely generated .-modules . and ., neither of them free, whose tensor product is torsion-free, we show that . must be local with the same residue field as ..
16#
發(fā)表于 2025-3-24 08:51:16 | 只看該作者
Springer INdAM Serieshttp://image.papertrans.cn/n/image/669167.jpg
17#
發(fā)表于 2025-3-24 13:46:25 | 只看該作者
https://doi.org/10.1007/978-3-030-40822-0Numerical semigroups; Semigroup rings; Monomial curves; Affine monoids; Wilf conjecture
18#
發(fā)表于 2025-3-24 16:35:25 | 只看該作者
Book 2020cluding results and examples that are very difficult to find in a structured exposition elsewhere. The contents comprise the proceedings of the 2018 INdAM “International Meeting on Numerical Semigroups”, held in Cortona, Italy. Talks at the meeting centered not only on traditional types of numerical
19#
發(fā)表于 2025-3-24 22:44:33 | 只看該作者
2281-518X ults and examples that are very difficult to find in a struc.This book presents the state of the art on numerical semigroups and related subjects, offering different perspectives on research in the field and including results and examples that are very difficult to find in a structured exposition el
20#
發(fā)表于 2025-3-25 02:22:55 | 只看該作者
Syzygies of Numerical Semigroup Rings, a Survey Through Examples,quence of integers in arithmetic progression. Finally, we describe how the resolution is constructed when the semigroup is obtained by gluing of two numerical semigroups of smaller embedding dimension. Along the paper, we provide several non-trivial examples to illustrate our results.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 11:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
枣阳市| 南皮县| 安庆市| 漠河县| 通化市| 定南县| 鹤壁市| 肥乡县| 乌拉特中旗| 泽州县| 临泉县| 永寿县| 柳州市| 巴彦县| 华池县| 乐都县| 新郑市| 揭东县| 安西县| 宁波市| 凤翔县| 依兰县| 九江县| 淳化县| 乃东县| 班玛县| 东海县| 华容县| 嘉黎县| 禄丰县| 娄烦县| 通海县| 奇台县| 微博| 通辽市| 正阳县| 南康市| 高淳县| 大足县| 常宁市| 卫辉市|