找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Nonsmooth Optimization; State of the Art Alg Adil M. Bagirov,Manlio Gaudioso,Sona Taheri Book 2020 Springer Nature Switzerland AG

[復(fù)制鏈接]
樓主: Ensign
21#
發(fā)表于 2025-3-25 06:34:13 | 只看該作者
22#
發(fā)表于 2025-3-25 07:37:12 | 只看該作者
23#
發(fā)表于 2025-3-25 12:10:24 | 只看該作者
24#
發(fā)表于 2025-3-25 16:59:32 | 只看該作者
Bundle Methods for Nonsmooth DC Optimizationconditions are discussed and the relationship between sets of different stationary points (critical, Clarke stationary and inf-stationary) is established. Bundle methods are developed based on a nonconvex piecewise linear model of the objective function and the convergence of these methods is studie
25#
發(fā)表于 2025-3-25 21:25:15 | 只看該作者
26#
發(fā)表于 2025-3-26 02:47:20 | 只看該作者
Beyond the Oracle: Opportunities of Piecewise Differentiationoracle that evaluates at any given . the objective function value .(.) and a generalized gradient .?∈?.(.) in the sense of Clarke. We will argue here that, if there is a realistic possibility of computing a vector . that is guaranteed to be a generalized gradient, then one must know so much about th
27#
發(fā)表于 2025-3-26 05:01:34 | 只看該作者
Numerical Solution of Generalized Minimax Problemssts in the minimization of nonsmooth functions which are compositions of special smooth convex functions with maxima of smooth functions. The most important functions of this type are the sums of maxima of smooth functions. Section 11.2 is devoted to primal interior point methods which use solutions
28#
發(fā)表于 2025-3-26 11:19:57 | 只看該作者
29#
發(fā)表于 2025-3-26 15:12:14 | 只看該作者
New Multiobjective Proximal Bundle Method with Scaled Improvement Functioncase the improvement function possesses, for example the nice property that a descent direction for the improvement function improves all the objectives of the original problem. However, the numerical experiments have shown that the standard improvement function is rather sensitive for scaling. For
30#
發(fā)表于 2025-3-26 19:23:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 05:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
马公市| 石河子市| 日照市| 库尔勒市| 河津市| 弥勒县| 秦安县| 即墨市| 上犹县| 长垣县| 万山特区| 平乐县| 耿马| 元江| 浮梁县| 台东市| 吕梁市| 南陵县| 株洲市| 新沂市| 德兴市| 桐城市| 涞水县| 三明市| 东乌珠穆沁旗| 罗源县| 封丘县| 广丰县| 锡林浩特市| 盈江县| 晋城| 平顺县| 二手房| 芦山县| 咸宁市| 义乌市| 鱼台县| 思茅市| 静海县| 乌拉特中旗| 通河县|