找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Methods for Free Boundary Problems; Proceedings of a Con P. Neittaanm?ki Conference proceedings 1991 Springer Basel AG 1991 finit

[復(fù)制鏈接]
樓主: Hayes
31#
發(fā)表于 2025-3-27 00:32:27 | 只看該作者
32#
發(fā)表于 2025-3-27 02:01:49 | 只看該作者
Computational stability of an initially radial solution of a growth/dissolution problem in a nonradiWe consider a free boundary problem modelling the growth/dissolution of a crystal. The aim is to investigate the following question: Does the solution to the crystal growth problem posed in two dimensions with radially symmetric initial and boundary condition evolve as a radially symmetric solution?
33#
發(fā)表于 2025-3-27 06:10:08 | 只看該作者
Shape Optimization for Multi-Phase Stefan ProblemsWe consider problems of shape optimization in which the driving actions are performed by geometry on the lateral boundary or geometry of the domain. We prove the existence of an optimal solution and discuss its approximation.
34#
發(fā)表于 2025-3-27 13:03:02 | 只看該作者
35#
發(fā)表于 2025-3-27 15:57:07 | 只看該作者
A. Bossavitdividual frame elements to model a portal frame. Coupling and uncertainty inference of the inexact constituent models are achieved using optimization, where both separate-effect and integral-effect experiments are employed to train the model form error of the constituents and coupled system.
36#
發(fā)表于 2025-3-27 19:57:53 | 只看該作者
37#
發(fā)表于 2025-3-27 23:24:11 | 只看該作者
Hans Wilhelm Alt,Irena Pawlowo increase silvicultural investment through subsidies and tax breaks. Policies are conflicting, with the needed compromises possibly leading to the abandonment of one or more objectives, possibly environmental ones, at some future time.
38#
發(fā)表于 2025-3-28 06:00:00 | 只看該作者
39#
發(fā)表于 2025-3-28 10:09:06 | 只看該作者
40#
發(fā)表于 2025-3-28 13:38:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 21:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安溪县| 丹凤县| 双鸭山市| 嘉定区| 安西县| 营口市| 南安市| 滨海县| 南投市| 曲阳县| 新平| 临朐县| 达拉特旗| 清流县| 慈溪市| 鹿邑县| 通道| 定兴县| 伊春市| 龙陵县| 文水县| 延边| 京山县| 镇康县| 桃园县| 平潭县| 青海省| 惠水县| 延庆县| 霞浦县| 临泽县| 汪清县| 五指山市| 大同县| 余干县| 浦北县| 杂多县| 江门市| 陆河县| 南宁市| 宜城市|