找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Methods for Conservation Laws; Randall J. LeVeque Textbook 1992Latest edition Springer Basel AG 1992 CFL condition.average.compa

[復(fù)制鏈接]
樓主: PLY
11#
發(fā)表于 2025-3-23 10:32:00 | 只看該作者
12#
發(fā)表于 2025-3-23 16:25:32 | 只看該作者
13#
發(fā)表于 2025-3-23 20:11:05 | 只看該作者
IntroductionThese notes concern the solution of hyperbolic systems of conservation laws. These are time-dependent systems of partial differential equations (usually nonlinear) with a particularly simple structure.
14#
發(fā)表于 2025-3-23 22:17:46 | 只看該作者
Scalar Conservation LawsWe begin our study of conservation laws by considering the scalar case. Many of the difficulties encountered with systems of equations are already encountered here, and a good understanding of the scalar equation is required before proceeding.
15#
發(fā)表于 2025-3-24 03:50:30 | 只看該作者
16#
發(fā)表于 2025-3-24 08:38:49 | 只看該作者
Rarefaction Waves and Integral CurvesAll of the Riemann solutions considered so far have the following property: the solution is constant along all rays of the form . = ξ.. Consequently, the solution is a function of ./. alone, and is said to be a “similarity solution” of the PDE.
17#
發(fā)表于 2025-3-24 12:27:24 | 只看該作者
Numerical Methods for Linear EquationsBefore studying numerical methods for nonlinear conservation laws, we review some of the basic theory of numerical methods for the linear advection equation and linear hyperbolic systems. The emphasis will be on concepts that carry over to the nonlinear case.
18#
發(fā)表于 2025-3-24 15:58:34 | 只看該作者
19#
發(fā)表于 2025-3-24 22:29:22 | 只看該作者
20#
發(fā)表于 2025-3-24 23:28:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 02:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
邵阳市| 和硕县| 崇州市| 五峰| 民权县| 长泰县| 新绛县| 新野县| 庄浪县| 台南县| 辽中县| 赣榆县| 三亚市| 揭西县| 常熟市| 太原市| 阿克苏市| 南平市| 亚东县| 施秉县| 邹城市| 商都县| 星座| 晴隆县| 富裕县| 玛多县| 安阳市| 正蓝旗| 永修县| 高陵县| 永新县| 汕尾市| 江川县| 武清区| 株洲县| 三原县| 云阳县| 长武县| 弥渡县| 金川县| 贺州市|