找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Integration of Space Fractional Partial Differential Equations; Vol 2 - Applications Younes Salehi,William E. Schiesser Book 2018

[復(fù)制鏈接]
查看: 35643|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:05:57 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Numerical Integration of Space Fractional Partial Differential Equations
副標(biāo)題Vol 2 - Applications
編輯Younes Salehi,William E. Schiesser
視頻videohttp://file.papertrans.cn/670/669007/669007.mp4
叢書名稱Synthesis Lectures on Mathematics & Statistics
圖書封面Titlebook: Numerical Integration of Space Fractional Partial Differential Equations; Vol 2 - Applications Younes Salehi,William E. Schiesser Book 2018
描述

Partial differential equations (PDEs) are one of the most used widely forms of mathematics in science and engineering. PDEs can have partial derivatives with respect to (1) an initial value variable, typically time, and (2) boundary value variables, typically spatial variables. Therefore, two fractional PDEs can be considered, (1) fractional in time (TFPDEs), and (2) fractional in space (SFPDEs). The two volumes are directed to the development and use of SFPDEs, with the discussion divided as:

  • Vol 1: Introduction to Algorithms and Computer Coding in R
  • Vol 2: Applications from Classical Integer PDEs.
  • Various definitions of space fractional derivatives have been proposed. We focus on the Caputo derivative, with occasional reference to the Riemann-Liouville derivative.

    In the second volume, the emphasis is on applications of SFPDEs developed mainly through the extension of classical integer PDEs to SFPDEs. The example applications are:

    • Fractional diffusion equation with Dirichlet, Neumann and Robin boundary conditions.
    • Fisher-Kolmogorov SFPDE
    • 出版日期Book 2018
      版次1
      doihttps://doi.org/10.1007/978-3-031-02412-2
      isbn_softcover978-3-031-01284-6
      isbn_ebook978-3-031-02412-2Series ISSN 1938-1743 Series E-ISSN 1938-1751
      issn_series 1938-1743
      copyrightSpringer Nature Switzerland AG 2018
      The information of publication is updating

      書目名稱Numerical Integration of Space Fractional Partial Differential Equations影響因子(影響力)




      書目名稱Numerical Integration of Space Fractional Partial Differential Equations影響因子(影響力)學(xué)科排名




      書目名稱Numerical Integration of Space Fractional Partial Differential Equations網(wǎng)絡(luò)公開度




      書目名稱Numerical Integration of Space Fractional Partial Differential Equations網(wǎng)絡(luò)公開度學(xué)科排名




      書目名稱Numerical Integration of Space Fractional Partial Differential Equations被引頻次




      書目名稱Numerical Integration of Space Fractional Partial Differential Equations被引頻次學(xué)科排名




      書目名稱Numerical Integration of Space Fractional Partial Differential Equations年度引用




      書目名稱Numerical Integration of Space Fractional Partial Differential Equations年度引用學(xué)科排名




      書目名稱Numerical Integration of Space Fractional Partial Differential Equations讀者反饋




      書目名稱Numerical Integration of Space Fractional Partial Differential Equations讀者反饋學(xué)科排名




      單選投票, 共有 0 人參與投票
       

      0票 0%

      Perfect with Aesthetics

       

      0票 0%

      Better Implies Difficulty

       

      0票 0%

      Good and Satisfactory

       

      0票 0%

      Adverse Performance

       

      0票 0%

      Disdainful Garbage

      您所在的用戶組沒有投票權(quán)限
      沙發(fā)
      發(fā)表于 2025-3-21 22:27:36 | 只看該作者
      板凳
      發(fā)表于 2025-3-22 01:59:10 | 只看該作者
      Numerical Integration of Space Fractional Partial Differential Equations978-3-031-02412-2Series ISSN 1938-1743 Series E-ISSN 1938-1751
      地板
      發(fā)表于 2025-3-22 05:23:46 | 只看該作者
      Book 2018tives with respect to (1) an initial value variable, typically time, and (2) boundary value variables, typically spatial variables. Therefore, two fractional PDEs can be considered, (1) fractional in time (TFPDEs), and (2) fractional in space (SFPDEs). The two volumes are directed to the development
      5#
      發(fā)表于 2025-3-22 12:15:43 | 只看該作者
      1938-1743 ial derivatives with respect to (1) an initial value variable, typically time, and (2) boundary value variables, typically spatial variables. Therefore, two fractional PDEs can be considered, (1) fractional in time (TFPDEs), and (2) fractional in space (SFPDEs). The two volumes are directed to the d
      6#
      發(fā)表于 2025-3-22 15:36:01 | 只看該作者
      Book 2018phasis is on applications of SFPDEs developed mainly through the extension of classical integer PDEs to SFPDEs. The example applications are:

      • Fractional diffusion equation with Dirichlet, Neumann and Robin boundary conditions.
      • Fisher-Kolmogorov SFPDE
      • 7#
        發(fā)表于 2025-3-22 19:00:41 | 只看該作者
        Numerical Integration of Space Fractional Partial Differential EquationsVol 2 - Applications
        8#
        發(fā)表于 2025-3-22 23:57:08 | 只看該作者
        1938-1743 :

        • Fractional diffusion equation with Dirichlet, Neumann and Robin boundary conditions.
        • Fisher-Kolmogorov SFPDE
        • 9#
          發(fā)表于 2025-3-23 04:02:22 | 只看該作者
          Younes Salehi,William E. Schiesser in Molecular Biology?. series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, provide step-by-step laboratory protocols, and key tips on troubl978-1-4939-6244-0978-1-62703-308-4Series ISSN 1064-3745 Series E-ISSN 1940-6029
          10#
          發(fā)表于 2025-3-23 06:52:30 | 只看該作者
          in Molecular Biology?. series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, provide step-by-step laboratory protocols, and key tips on troubl978-1-4939-6244-0978-1-62703-308-4Series ISSN 1064-3745 Series E-ISSN 1940-6029
           關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
          派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
          發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
          QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 00:42
          Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
          快速回復(fù) 返回頂部 返回列表
          泌阳县| 新巴尔虎左旗| 西城区| 克山县| 曲周县| 鹿邑县| 漳州市| 龙胜| 中牟县| 桐城市| 溧水县| 黔南| 榆社县| 临沧市| 调兵山市| 丽水市| 大城县| 类乌齐县| 神农架林区| 万安县| 大同县| 海门市| 阿克| 休宁县| 壤塘县| 泽州县| 化州市| 德昌县| 杭锦旗| 驻马店市| 静海县| 宣恩县| 田林县| 县级市| 赤峰市| 长武县| 东至县| 牡丹江市| 乌恰县| 邢台市| 武义县|