找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Integration III; Proceedings of the C H. Bra?,G. H?mmerlin Conference proceedings 1988 Springer Basel AG 1988 integration.mathema

[復(fù)制鏈接]
樓主: 是消毒
41#
發(fā)表于 2025-3-28 15:40:22 | 只看該作者
Universal quadrature rules in the space of periodic functions,IS / RABINOWITZ [.] p. 331). One main objection to the practicality of optimal rules is that they are tailored for one special class of functions. But mostly we are interested in rules, which work well for many classes of functions. It is the aim of this paper to make this idea more precise by the d
42#
發(fā)表于 2025-3-28 20:56:22 | 只看該作者
43#
發(fā)表于 2025-3-29 02:25:37 | 只看該作者
44#
發(fā)表于 2025-3-29 06:08:53 | 只看該作者
Jacobi Moments and a Family of Special Orthogonal Polynomials, a real parameter with 0 < λ < 1. As no closed representation of the orthogonal polynomials .was known, WHEELER was interested in the Chebyshev moments .since the recurrence relation for the .may be derived via modified moments (e.g. Chebyshev moments) using a Cholesky type process. Moreover, Gau?-t
45#
發(fā)表于 2025-3-29 09:54:31 | 只看該作者
46#
發(fā)表于 2025-3-29 11:36:59 | 只看該作者
Some Comments on Quadrature Rule Construction Criteria,s for the error functional, these being generalizations of the Euler Maclaurin asymptotic expansion and the Poisson Summation Formula, respectively. Topics include algebraic and trigonometric degree, Romberg Integration, and the criteria for “Good Lattice” rules. This paper is solely concerned with
47#
發(fā)表于 2025-3-29 18:11:12 | 只看該作者
48#
發(fā)表于 2025-3-29 23:47:54 | 只看該作者
Quasi-Monte Carlo Methods for Multidimensional Numerical Integration,the integration domain to be . = [0,1]., s ≥ 1, then .where ..,..., .. are N independent random samples from the uniform distribution on .. The expected value of the integration error is O(N.). The basic idea of a . is to replace random nodes by well-chosen deterministic nodes, with the aim of getti
49#
發(fā)表于 2025-3-30 03:26:28 | 只看該作者
On Tchebycheff Quadrature Formulas,reviated T-q) on [a,b] if there are n nodes z. ∈ ?, z.. real or complex conjugate, such that . where IP., m ∈ IN., denotes the set of polynomials of degree at most m. If the nodes z., j = 1,...,n, are real, then we call (1.1) a (m,n,d.) T-quadrature formula (T-qf). A (m,n,d.) T-qf is called a strict
50#
發(fā)表于 2025-3-30 06:58:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 19:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昌吉市| 双峰县| 舟山市| 珠海市| 休宁县| 扎赉特旗| 平凉市| 资源县| 清苑县| 宁强县| 城固县| 连山| 南漳县| 盘锦市| 凤山市| 二连浩特市| 大同县| 石河子市| 宁安市| 开封县| 惠水县| 加查县| 调兵山市| 九寨沟县| 建阳市| 青冈县| 贺兰县| 盐津县| 宁波市| 武冈市| 巴青县| 永安市| 东安县| 托克逊县| 大丰市| 宜春市| 宁乡县| 申扎县| 卢龙县| 大宁县| 霍州市|