找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Integration; Proceedings of the C G. H?mmerlin Conference proceedings 1982 Springer Basel AG 1982

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 11:04:56 | 只看該作者
12#
發(fā)表于 2025-3-23 14:14:39 | 只看該作者
13#
發(fā)表于 2025-3-23 19:37:37 | 只看該作者
14#
發(fā)表于 2025-3-23 22:48:36 | 只看該作者
15#
發(fā)表于 2025-3-24 03:02:38 | 只看該作者
16#
發(fā)表于 2025-3-24 07:23:46 | 只看該作者
Quadraturrest, Approximation und Chebyshev-Polynome,es and to use more robust methods. One can consider series expansions (Hilbert space, holomorphy). But there are simpler methods, employing polynomials, approximation, grids. In connection with quadrature such methods have been worked out by several authors; we mention Stroud, Locher-Zeller, Riess-J
17#
發(fā)表于 2025-3-24 13:45:28 | 只看該作者
18#
發(fā)表于 2025-3-24 14:59:14 | 只看該作者
Some Reflections on the Euler-Maclaurin Sum Formula,that paper the classical Euler-Maclaurin formula was analysed and generalized to give a variety of quadrature formulae in both one and more than one dimension. In the present contribution a similar approach will be made to investigate . formulae. Due to restrictions on space only the one dimensional
19#
發(fā)表于 2025-3-24 19:48:53 | 只看該作者
A Note on Cubature over a Triangle of a Function Having Specified Singularities,r. where r is the distance of (x,y) from C and x is the distance of (x,y) from AB. In particular we show how to construct rules which are exact for integrand functions p.(x,y)h.(r) where p. and h. are polynomials of degree λ and μ, respectively.
20#
發(fā)表于 2025-3-25 02:18:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 04:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
政和县| 改则县| 漯河市| 河池市| 平南县| 阳新县| 盐津县| 塔城市| 茌平县| 凤冈县| 沁源县| 武胜县| 裕民县| 淅川县| 浙江省| 肃北| 嘉峪关市| 宜川县| 什邡市| 西峡县| 城步| 黄梅县| 辽宁省| 安徽省| 姜堰市| 中西区| 沙河市| 鹤壁市| 靖江市| 桂阳县| 澳门| 和林格尔县| 桦川县| 镇原县| 保靖县| 连山| 东宁县| 惠安县| 富顺县| 康平县| 万州区|