找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Integration; Recent Developments, Terje O. Espelid,Alan Genz Book 1992 Springer Science+Business Media Dordrecht 1992 Numerical i

[復(fù)制鏈接]
樓主: deep-sleep
41#
發(fā)表于 2025-3-28 16:51:06 | 只看該作者
1389-2185 his nature was held, at Dalhousie University in Halifax, Canada, in 1986. Recent theoretical developments have mostly occurred in the area of integration rule c978-94-010-5169-9978-94-011-2646-5Series ISSN 1389-2185
42#
發(fā)表于 2025-3-28 19:22:59 | 只看該作者
43#
發(fā)表于 2025-3-29 02:33:30 | 只看該作者
44#
發(fā)表于 2025-3-29 06:52:19 | 只看該作者
45#
發(fā)表于 2025-3-29 07:43:34 | 只看該作者
Error Bounds Based on Approximation TheoryWe give examples for the usefulness of approximation theory in the discussion of error bounds for quadrature rules. Our main point is that this method is not only simple and general, but that it leads to sharp estimates in many cases.
46#
發(fā)表于 2025-3-29 14:30:06 | 只看該作者
Numerical Integration of Singular and Hypersingular Integrals in Boundary Element MethodsFor weakly-, Cauchy- and hypersingular surface integrals arising in three-dimensional boundary element methods, we present and analyze several numerical integration schemes. Asymptotic error estimates in terms of the size of the integration domain are given.
47#
發(fā)表于 2025-3-29 18:44:20 | 只看該作者
48#
發(fā)表于 2025-3-29 20:42:01 | 只看該作者
49#
發(fā)表于 2025-3-29 23:55:06 | 只看該作者
Developments in Solving Integral Equations Numerically substitution kernel method and some recent results. In particular, the extension to Hammerstein integral equations, an investigation of Bateman’s method as applied to eigenvalue problems and its convergence behaviour for Green’s kernels are considered.
50#
發(fā)表于 2025-3-30 04:12:17 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 08:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昌吉市| 黔江区| 柏乡县| 常德市| 临泽县| 罗田县| 富平县| 冀州市| 凌源市| 宝鸡市| 井陉县| 湘潭县| 大兴区| 永丰县| 固始县| 甘洛县| 都江堰市| 滦南县| 曲靖市| 广昌县| 慈溪市| 哈密市| 平顺县| 罗山县| 罗江县| 且末县| 西丰县| 麟游县| 徐闻县| 仙桃市| 中阳县| 启东市| 保靖县| 卫辉市| 郁南县| 香港 | 醴陵市| 乐亭县| 衡阳县| 新化县| 吉木乃县|