找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Bifurcation Analysis for Reaction-Diffusion Equations; Zhen Mei Book 2000 Springer-Verlag Berlin Heidelberg 2000 Numerics.Numeri

[復(fù)制鏈接]
樓主: CANTO
31#
發(fā)表于 2025-3-26 22:21:30 | 只看該作者
Liapunov-Schmidt Method,gebraic equations. This system is responsible for the bifurcation scenario and normally is easy to analyze. Another advantage of this approach is that the established singularity theory can be utilized directly to determine normal forms of these algebraic equations and their bifurcation scenario, se
32#
發(fā)表于 2025-3-27 04:15:30 | 只看該作者
Center Manifold Theory,anifold theory is used to reduce a dynamical system near a nonhyperbolic equilibrium or a periodic solution to a low-dimensional system with the vector field as functions of the critical modes. Furthermore, stability of solutions and local dynamics of the system can be derived from the low-dimension
33#
發(fā)表于 2025-3-27 07:48:50 | 只看該作者
34#
發(fā)表于 2025-3-27 12:45:50 | 只看該作者
One-Dimensional Reaction-Diffusion Equations, To ensure a correct reflection of bifurcation scenario in discretizations and to reduce imperfection of singularities, we consider a preservation of multiplicities of the bifurcation points in the discrete problems. A continuation-Arnoldi algorithm is exploited to trace the solution branches and to
35#
發(fā)表于 2025-3-27 17:05:03 | 只看該作者
Reaction-Diffusion Equations on a Square,ndary conditions.Here . :— (....). are state variables representing concentrations of immediate products; λ ∈ .. is a vector of control parameters and d ∈ R is the diffusion rate of the second substance. The functions .. : ...., . = 1,2, describe reactions among the substances. They are supposed to
36#
發(fā)表于 2025-3-27 19:38:49 | 只看該作者
37#
發(fā)表于 2025-3-28 00:35:56 | 只看該作者
Steady/Steady State Mode Interactions,impose the homogeneous Dirichlet boundary conditions to these equations. We distinguish mode interactions resulted from multiple parameters from multiple bifurcations induced by symmetries in the problem. More precisely, we treat multiple bifurcations as a special case of mode interactions since thi
38#
發(fā)表于 2025-3-28 06:05:24 | 只看該作者
Homotopy of Boundary Conditions, is described by the Laplace operator ., as in the equation .for unstirred reactions. Diffusion is the underlying mechanism for spatial pattern formations. Properties and spectrum of the Laplacian are decisive for analysis of dynamics and bifurcations of reaction-diffusion equations. As we have seen
39#
發(fā)表于 2025-3-28 08:54:29 | 只看該作者
40#
發(fā)表于 2025-3-28 10:32:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 13:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
酉阳| 甘泉县| 中牟县| 蕉岭县| 台中县| 马公市| 美姑县| 广州市| 留坝县| 泗阳县| 于都县| 台中市| 庆阳市| 河曲县| 泗阳县| 天津市| 石城县| 蒲江县| 都兰县| 上饶市| 墨江| 定边县| 大同县| 揭西县| 马尔康县| 军事| 庄河市| 石首市| 东山县| 瑞安市| 洞口县| 株洲市| 凤山市| 普兰店市| 周口市| 屯留县| 淮北市| 河津市| 通辽市| 武清区| 大冶市|