找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Number Theory and Related Fields; In Memory of Alf van Jonathan M. Borwein,Igor Shparlinski,Wadim Zudilin Conference proceedings 2013 Sprin

[復(fù)制鏈接]
樓主: Cleveland
31#
發(fā)表于 2025-3-26 21:25:45 | 只看該作者
32#
發(fā)表于 2025-3-27 05:04:42 | 只看該作者
33#
發(fā)表于 2025-3-27 07:08:29 | 只看該作者
,Life and Mathematics of Alfred Jacobus van der Poorten (1942–2010),r the rest of his life but travelled overseas for professional reasons several times a year from 1975 onwards. Alf was famous for his research in number theory and for his extensive contributions to the mathematics profession both in Australia and overseas..The scientific work of Alf van der Poorten
34#
發(fā)表于 2025-3-27 11:56:47 | 只看該作者
,Ramanujan–Sato-Like Series,complex plane. Then we use these .-functions together with a conjecture to find new examples of series of non-hypergeometric type. To motivate our theory we begin with the simpler case of Ramanujan–Sato series for 1∕..
35#
發(fā)表于 2025-3-27 16:17:17 | 只看該作者
On the Sign of the Real Part of the Riemann Zeta Function,sities related to the argument and to the real part of the zeta function on such lines. Using classical results of Bohr and Jessen, we obtain an explicit expression for the characteristic function associated with the argument. We give explicit expressions for the densities in terms of this character
36#
發(fā)表于 2025-3-27 17:47:27 | 只看該作者
,Additive Combinatorics: With a View Towards Computer Science and Cryptography—An Exposition,ause of a blend of ideas and techniques from several seemingly unrelated contexts which are used there. One might say that additive combinatorics is a branch of mathematics concerning the study of combinatorial properties of algebraic objects, for instance, Abelian groups, rings, or fields. This eme
37#
發(fā)表于 2025-3-28 00:22:35 | 只看該作者
38#
發(fā)表于 2025-3-28 03:08:34 | 只看該作者
39#
發(fā)表于 2025-3-28 06:49:09 | 只看該作者
Continued Fractions and Dedekind Sums for Function Fields,continued fractions, Hickerson answered these questions affirmatively. In function fields, there exists a Dedekind sum .(., .) (see Sect. 4) similar to .(., .). Using continued fractions, we answer the analogous problems for .(., .).
40#
發(fā)表于 2025-3-28 12:54:48 | 只看該作者
Consequences of a Factorization Theorem for Generalized Exponential Polynomials with Infinitely Manfinitely many integer zeros of a generalized exponential polynomial form a finite union of arithmetic progressions. The second shows how to construct classes of transcendentally transcendental power series having the property that the index set of its zero coefficients is a finite union of arithmeti
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 22:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
元朗区| 阳东县| 巢湖市| 淮滨县| 巴青县| 二连浩特市| 通城县| 玉田县| 永济市| 时尚| 洛阳市| 彩票| 独山县| 靖安县| 涟水县| 双流县| 镇康县| 股票| 琼海市| 丽水市| 宁河县| 福清市| 昭觉县| 石景山区| 马龙县| 华蓥市| 枣阳市| 宜昌市| 墨竹工卡县| 卫辉市| 弥勒县| 阿鲁科尔沁旗| 岢岚县| 民和| 东兰县| 丹江口市| 海安县| 安平县| 丹凤县| 伊春市| 互助|