找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Number Theory; R. P. Bambah,V. C. Dumir,R. J. Hans-Gill Book 2000 Hindustan Book Agency 2000

[復(fù)制鏈接]
樓主: IU421
41#
發(fā)表于 2025-3-28 18:32:30 | 只看該作者
Recent Developments in the Mean Square Theory of the Riemann Zeta and Other Zeta-Functions,spects of the theory of zeta-functions, such as the distribution of zeros, value-distribution, and applications to number theory. Some of them are probably treated in the articles of Professor Apostol and Professor Ramachandra in the present volume.
42#
發(fā)表于 2025-3-28 20:28:16 | 只看該作者
A Centennial History of the Prime Number Theorem,Among the thousands of discoveries made by mathematicians over the centuries, some stand out as significant landmarks. One of these is the ., which describes the asymptotic distribution of prime numbers. It can be stated in various equivalent forms, two of which are: . and
43#
發(fā)表于 2025-3-29 02:13:44 | 只看該作者
44#
發(fā)表于 2025-3-29 03:36:40 | 只看該作者
On Values of Linear and Quadratic Forms at Integral Points,The aim of this article is to give an exposition of certain applications of the study of the homogeneous space .(.)/.(.) and the flows on it induced by subgroups of .(.), to problems on values of linear and quadratic forms at integral points. Also, some complements to Margulis’s theorem on Oppenheim’s conjecture are proved.
45#
發(fā)表于 2025-3-29 08:23:48 | 只看該作者
46#
發(fā)表于 2025-3-29 11:37:58 | 只看該作者
47#
發(fā)表于 2025-3-29 19:05:14 | 只看該作者
,Artin’s Conjecture for Polynomials Over Finite Fields,A classical conjecture of E. Artin[Ar] predicts that any integer . ≠ ±1 or a perfect square is a primitive root (mod .) for infinitely many primes . This conjecture is still open. In 1967, Hooley[H] proved the conjecture assuming the (as yet) unresolved generalized Riemann hypothesis for Dedekind zeta functions of certain number fields.
48#
發(fā)表于 2025-3-29 23:01:23 | 只看該作者
Continuous Homomorphisms as Arithmetical Functions, and Sets of Uniqueness,Let, as usual ?, ?, ?, ?, ? be the set of positive integers, integers, rational, real, and complex numbers, respectively. Let ?., ?. be the multiplicative group of positive rationals, reals, respectively. Let . be the set of prime numbers.
49#
發(fā)表于 2025-3-30 02:34:16 | 只看該作者
50#
發(fā)表于 2025-3-30 05:33:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 07:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
龙陵县| 林西县| 邳州市| 马尔康县| 汉沽区| 内丘县| 滦南县| 乌恰县| 徐水县| 溧水县| 应城市| 灵宝市| 新平| 工布江达县| 安吉县| 堆龙德庆县| 遂宁市| 商城县| 延庆县| 南召县| 霍山县| 洛川县| 嘉荫县| 申扎县| 九台市| 宁明县| 民乐县| 商都县| 邵阳县| 陕西省| 崇左市| 涡阳县| 肥乡县| 桐城市| 吴江市| 通化县| 工布江达县| 突泉县| 曲麻莱县| 二连浩特市| 江达县|