找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Notes on Functional Analysis; Rajendra Bhatia Book 2009 Hindustan Book Agency (India) 2009

[復(fù)制鏈接]
樓主: CT951
11#
發(fā)表于 2025-3-23 12:28:22 | 只看該作者
12#
發(fā)表于 2025-3-23 17:30:10 | 只看該作者
13#
發(fā)表于 2025-3-23 21:01:02 | 只看該作者
Some Special Operators in Hilbert Space,The additional structure in a Hilbert space and its self-duality make the adjoint operation especially interesting. All Hilbert spaces that we consider are over complex scalars except when we say otherwise.
14#
發(fā)表于 2025-3-24 00:44:21 | 只看該作者
15#
發(fā)表于 2025-3-24 05:07:12 | 只看該作者
The Weak Topology,uniformly. There are other notions of convergence that are weaker, and still very useful in analysis. This is the motivation for studying different topologies on spaces of functions, and on general Banach spaces.
16#
發(fā)表于 2025-3-24 06:47:18 | 只看該作者
17#
發(fā)表于 2025-3-24 13:23:52 | 只看該作者
The Resolvent and The Spectrum,lues of .. In infinite dimensions there are complications that arise from the fact that an operator could fail to be invertible in different ways. Finding the spectrum is not an easy problem even in the finite-dimensional case; it is much more difficult in infinite dimensions.
18#
發(fā)表于 2025-3-24 15:22:55 | 只看該作者
Subdivision of the Spectrum,eigenvalue. The adjoint of . is the left shift operator . on the space ?.. If λ is any complex number with |λ| ≤ 1, then the vector . = (1, λ, λ.,…) is in ?. and . = λ.. Thus . point λ in the disk . is an eigenvalue of .. This shows also that .(.) = .(.) = ..
19#
發(fā)表于 2025-3-24 22:08:17 | 只看該作者
Hindustan Book Agency (India) 2009
20#
發(fā)表于 2025-3-24 23:28:39 | 只看該作者
Texts and Readings in Mathematicshttp://image.papertrans.cn/n/image/668252.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 12:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
山东省| 墨玉县| 东乡| 宝山区| 平原县| 河东区| 沧州市| 灌阳县| 宜兰县| 含山县| 花莲县| 普安县| 南康市| 岳西县| 句容市| 巫山县| 秦安县| 马边| 兴城市| 襄樊市| 南雄市| 黔东| 金华市| 建德市| 双城市| 武宁县| 信宜市| 泗洪县| 宁城县| 齐齐哈尔市| 鄂伦春自治旗| 永顺县| 晋宁县| 嵩明县| 汨罗市| 潜江市| 淮阳县| 浦江县| 秦安县| 荣成市| 宣城市|