找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Normal 2-Coverings of the Finite Simple Groups and their Generalizations; Daniela Bubboloni,Pablo Spiga,Thomas Stefan Weigel Book 2024 The

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 05:35:49 | 只看該作者
Daniela Bubboloni,Pablo Spiga,Thomas Stefan WeigelProvides the first comprehensive classification of normal 2-coverings of non-abelian‘simple groups.The first reference book to collect and consolidate existing research on normal‘2-coverings and their
22#
發(fā)表于 2025-3-25 08:58:33 | 只看該作者
Introduction,ering number of the almost simple groups. Some applications: the invariably generating graph and the Aut-invariably generating graph; the Erd?s–Ko–Rado theorem and the derangement graph; the Boston–Shalev conjecture; normal 2-coverings for arbitrary finite groups; normal coverings and Kronecker classes.
23#
發(fā)表于 2025-3-25 12:32:24 | 只看該作者
Preliminaries,Normal and weak normal coverings of classical and simple classical groups; Huppert’s Theorem and Singer cycles; primitive prime divisors and .-elements; Bertrand elements; the spinor norm and the Bertrand elements.
24#
發(fā)表于 2025-3-25 18:45:03 | 只看該作者
Linear Groups,Weak normal 2-covering and normal coverings of linear groups.
25#
發(fā)表于 2025-3-25 21:36:09 | 只看該作者
26#
發(fā)表于 2025-3-26 01:57:16 | 只看該作者
Symplectic Groups,Weak normal 2-covering and normal coverings of symplectic groups.
27#
發(fā)表于 2025-3-26 05:21:17 | 只看該作者
28#
發(fā)表于 2025-3-26 11:13:50 | 只看該作者
Orthogonal Groups with Witt Defect 1,Weak normal 2-covering and normal coverings of orthogonal groups with Witt defect
29#
發(fā)表于 2025-3-26 15:28:57 | 只看該作者
Orthogonal Groups with Witt Defect 0,Weak normal 2-covering and normal coverings of orthogonal groups with Witt defect 0.
30#
發(fā)表于 2025-3-26 18:19:22 | 只看該作者
Proofs of the Main Theorems,Proofs of the main theorems of the book.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 09:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
海安县| 甘洛县| 玛纳斯县| 青河县| 靖州| 内黄县| 怀宁县| 锦州市| 安宁市| 郸城县| 城口县| 科尔| 蓬安县| 松溪县| 天柱县| 当雄县| 乳山市| 乳源| 邵东县| 巫山县| 永靖县| 新竹市| 塔城市| 洞口县| 广西| 陆川县| 句容市| 德格县| 古浪县| 托克托县| 绩溪县| 镇远县| 西贡区| 武乡县| 中西区| 平定县| 靖远县| 大余县| 郯城县| 荆门市| 临清市|