找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonparametric Statistics; 3rd ISNPS, Avignon, Patrice Bertail,Delphine Blanke,Eric Matzner-L?ber Conference proceedings 2018 Springer Natu

[復制鏈接]
樓主: McKinley
41#
發(fā)表于 2025-3-28 17:20:14 | 只看該作者
Matú? Maciakorates the author‘s signature "Proof-by-Picture" methodThe congruences of a lattice form the congruence lattice.? Over the last several decades, the study of congruence lattices has established itself as a large and important field with a great number of interesting and deep results, as well as many
42#
發(fā)表于 2025-3-28 22:31:16 | 只看該作者
43#
發(fā)表于 2025-3-28 23:25:54 | 只看該作者
44#
發(fā)表于 2025-3-29 03:40:28 | 只看該作者
S. Ghoshorates the author‘s signature "Proof-by-Picture" methodThe congruences of a lattice form the congruence lattice.? Over the last several decades, the study of congruence lattices has established itself as a large and important field with a great number of interesting and deep results, as well as many
45#
發(fā)表于 2025-3-29 09:32:10 | 只看該作者
Symmetrizing ,-nn and Mutual ,-nn Smoothers,lity of linear smoothers, one realizes that many of the well-known linear nonparametric regression smoothers are inadmissible because either the smoothing matrix is asymmetric or the spectrum of the smoothing matrix lies outside the unit interval [0, 1]. The question answered in this chapter is how
46#
發(fā)表于 2025-3-29 12:26:40 | 只看該作者
47#
發(fā)表于 2025-3-29 19:20:04 | 只看該作者
48#
發(fā)表于 2025-3-29 22:17:47 | 只看該作者
49#
發(fā)表于 2025-3-30 00:41:40 | 只看該作者
50#
發(fā)表于 2025-3-30 07:50:15 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 23:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
安福县| 邳州市| 安龙县| 明溪县| 苍南县| 汾西县| 云浮市| 文化| 三亚市| 图们市| 苗栗市| 军事| 鄂尔多斯市| 东乌珠穆沁旗| 思南县| 高邑县| 茌平县| 六盘水市| 西昌市| 陇川县| 沙田区| 若羌县| 甘孜县| 平凉市| 修文县| 永兴县| 慈利县| 麻栗坡县| 金山区| 长泰县| 中方县| 米脂县| 石林| 高清| 忻州市| 讷河市| 齐河县| 兴和县| 克什克腾旗| 汾西县| 宕昌县|