找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Waves: Classical and Quantum Aspects; Fatkhulla Kh. Abdullaev,Vladimir V. Konotop Conference proceedings 2004 Springer Science+B

[復(fù)制鏈接]
樓主: 斷巖
31#
發(fā)表于 2025-3-26 21:29:47 | 只看該作者
cation, they remain important national universities. Moreover, as the plethora of so-called world-class higher education league tables would have us believe, they also have a powerful international status. This, however, is essentially a defensive response dependent upon the alleged reputations of t
32#
發(fā)表于 2025-3-27 04:44:26 | 只看該作者
Miki Wadati,Go Kato,Toshiaki Iidacation, they remain important national universities. Moreover, as the plethora of so-called world-class higher education league tables would have us believe, they also have a powerful international status. This, however, is essentially a defensive response dependent upon the alleged reputations of t
33#
發(fā)表于 2025-3-27 07:22:14 | 只看該作者
Stochastic Effects on the Eckhaus EquationThe random-force driven Eckhaus equation is studied in the case of a long range correlated noise. The ensemble average of the Kink solution is obtained, and some relevant correlation functions are obtained.
34#
發(fā)表于 2025-3-27 13:30:13 | 只看該作者
Scattering of NLS Solitons with Bound Quantum StatesInelastic collision between NLS3 solitons and bound quantum states in strong localized one-dimensional potentials are investigated.
35#
發(fā)表于 2025-3-27 14:51:08 | 只看該作者
978-1-4020-2189-3Springer Science+Business Media B.V. 2004
36#
發(fā)表于 2025-3-27 18:31:22 | 只看該作者
37#
發(fā)表于 2025-3-28 01:07:56 | 只看該作者
38#
發(fā)表于 2025-3-28 05:30:41 | 只看該作者
Solutions of the Logarithmic Schr?dinger Equation in a Rotating Harmonic Trap analytic solutions, we have chosen the logarithmic nonlinearity. The unexpected result of our study is the existence in the presence of nonlinearity of two or even three coexisting Gaussian solutions.
39#
發(fā)表于 2025-3-28 07:42:08 | 只看該作者
40#
發(fā)表于 2025-3-28 10:58:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 03:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
工布江达县| 奈曼旗| 绍兴市| 佛冈县| 叙永县| 白银市| 澜沧| 九龙县| 武汉市| 锦屏县| 云安县| 图木舒克市| 老河口市| 县级市| 平遥县| 宜州市| 黔东| 津市市| 武功县| 建平县| 平昌县| 台湾省| 定南县| 衡东县| 巫溪县| 石屏县| 迁西县| 新乡市| 合川市| 龙川县| 天祝| 衡水市| 灵璧县| 宜都市| 南陵县| 襄樊市| 柘荣县| 兴安县| 台前县| 临沂市| 苍南县|