找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Waves and Solitons on Contours and Closed Surfaces; Andrei Ludu Book 20122nd edition Springer-Verlag Berlin Heidelberg 2012 clos

[復(fù)制鏈接]
樓主: graphic
31#
發(fā)表于 2025-3-26 21:35:18 | 只看該作者
32#
發(fā)表于 2025-3-27 03:03:00 | 只看該作者
33#
發(fā)表于 2025-3-27 07:13:00 | 只看該作者
Andrei Luduavailable interpretations.Emphasizing the surprising relevan1. Introduction Kant considered the doctrine of transcendental idealism an indisp- sable part of the theory of knowledge presented in the Critique of Pure Reason. My aim in this book is to present a new defense of the coh- ence and plausibi
34#
發(fā)表于 2025-3-27 11:28:25 | 只看該作者
Andrei LuduPure Reason. My aim in this book is to present a new defense of the coh- ence and plausibility of Kant’s transcendental idealism and its indisp- sability for his theory of knowledge. I will show that the main argument of the Transcendental Aesthetic and the Transcendental Analytic is - fensible inde
35#
發(fā)表于 2025-3-27 14:13:51 | 只看該作者
36#
發(fā)表于 2025-3-27 21:45:43 | 只看該作者
Andrei Luduavailable interpretations.Emphasizing the surprising relevan1. Introduction Kant considered the doctrine of transcendental idealism an indisp- sable part of the theory of knowledge presented in the Critique of Pure Reason. My aim in this book is to present a new defense of the coh- ence and plausibi
37#
發(fā)表于 2025-3-28 00:01:29 | 只看該作者
38#
發(fā)表于 2025-3-28 03:47:40 | 只看該作者
Andrei Luduchschild-Mitchell cohomology. Bringing the . category into the picture we find that both earlier cohomologies can be seen as special cases of the .-cohomology for any given monoid. As far as cohomological dimensions go, for any given monoid ., one has: .. Special cases are discussed. Next, a canonic
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 04:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汉阴县| 普兰县| 富源县| 马关县| 绥德县| 江都市| 霸州市| 同心县| 北票市| 长葛市| 苗栗县| 大渡口区| 张家川| 米脂县| 定结县| 自贡市| 大新县| 介休市| 葫芦岛市| 宜城市| 壤塘县| 即墨市| 满洲里市| 托里县| 南京市| 蕉岭县| 宿迁市| 镇坪县| 象山县| 河北区| 松阳县| 开封县| 合作市| 兴义市| 峡江县| 宜君县| 辉南县| 灵璧县| 天气| 鄂托克旗| 游戏|