找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Systems of Fractional Differential Equations; Bashir Ahmad,Sotiris K. Ntouyas Book 2024 The Editor(s) (if applicable) and The Au

[復制鏈接]
樓主: 會議記錄
21#
發(fā)表于 2025-3-25 06:51:28 | 只看該作者
Preliminaries,In this chapter, we collect the concepts of fractional calculus related to our work and fixed point theorems used to study the fractional boundary value problems considered in this monograph.
22#
發(fā)表于 2025-3-25 10:04:00 | 只看該作者
23#
發(fā)表于 2025-3-25 14:18:23 | 只看該作者
Existence Results for Coupled Systems of Caputo-Type Sequential Fractional Differential Equations wThis chapter is concerned with the existence and uniqueness of solutions for a coupled system of Caputo-type sequential fractional differential equations equipped with nonlocal integral and Riemann–Stieltjes type boundary conditions.
24#
發(fā)表于 2025-3-25 18:14:46 | 只看該作者
25#
發(fā)表于 2025-3-25 20:50:35 | 只看該作者
26#
發(fā)表于 2025-3-26 02:48:38 | 只看該作者
27#
發(fā)表于 2025-3-26 06:43:01 | 只看該作者
28#
發(fā)表于 2025-3-26 10:55:26 | 只看該作者
Coupled Systems of Sequential Caputo and Hadamard Fractional Differential Equations with Coupled SeIn this chapter, we develop the existence criteria for solutions of a coupled system of sequential Caputo and Hadamard fractional differential equations complemented with coupled separated boundary conditions.
29#
發(fā)表于 2025-3-26 13:43:00 | 只看該作者
,A System of Fractional Differential Equations with Erdélyi-Kober Fractional Integral Conditions,In this chapter, we discuss the existence and uniqueness of solutions for a system of fractional differential equations subject to the nonlocal Erdélyi-Kober fractional integral conditions.
30#
發(fā)表于 2025-3-26 20:40:53 | 只看該作者
Positive Solutions for Fractional Differential Systems with Nonlocal Riemann-Liouville Fractional IIn this chapter, we present sufficient conditions for the existence of positive solutions to a nonlocal nonlinear boundary value problem containing Riemann-Liouville fractional derivative and integral operators.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-21 17:27
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
晋江市| 鄄城县| 泽州县| 宜兴市| 龙山县| 蓬安县| 呼图壁县| 河西区| 佛冈县| 若羌县| 车致| 翼城县| 潍坊市| 莱西市| 黎川县| 新绛县| 朝阳县| 射阳县| 土默特左旗| 独山县| 浦江县| 九江市| 正定县| 渭源县| 西宁市| 安宁市| 宿迁市| 巨鹿县| 陵水| 塔城市| 绵阳市| 丽水市| 辽源市| 和田市| 灌南县| 鲜城| 通州区| 温宿县| 康平县| 郑州市| 铜川市|