找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Stochastic Dynamic Engineering Systems; IUTAM Symposium Inns F. Ziegler,G. I. Schu?ller Conference proceedings 1988 Springer-Verl

[復制鏈接]
樓主: MOURN
31#
發(fā)表于 2025-3-26 21:16:47 | 只看該作者
Chaos in Nonlinear Systems Subjected to Small Random Perturbationsministic systems modeled by a one-dimensional mapping are analyzed when the system is perturbed by a multiplicative and an additive noise. Stochastic versions of invariant measure and Lyapunov exponent are calculated and are comparatively discussed with deterministic ones, from the viewpoint of cons
32#
發(fā)表于 2025-3-27 01:13:54 | 只看該作者
Stochastic Stability of Modes at Rest in Coupled Nonlinear Systemse subjected to external random excitation. Sufficient conditions for stability of the rest modes are established and applied to examine the stability of pitching vibration in a nonlinear absorber subjected to a random vertical support excitation.
33#
發(fā)表于 2025-3-27 07:18:14 | 只看該作者
34#
發(fā)表于 2025-3-27 13:30:54 | 只看該作者
Lyapunov Exponents of Nonlinear Stochastic Systemsts. The theory of Lyapunov exponents enables one to talk about stochastic stability, stochastic chaos and stochastic bifurcation of nonlinear stochastic systems in a way that is surprisingly analogous to the deterministic one.
35#
發(fā)表于 2025-3-27 15:50:43 | 只看該作者
36#
發(fā)表于 2025-3-27 20:18:53 | 只看該作者
37#
發(fā)表于 2025-3-28 00:37:16 | 只看該作者
38#
發(fā)表于 2025-3-28 05:22:48 | 只看該作者
39#
發(fā)表于 2025-3-28 08:48:25 | 只看該作者
40#
發(fā)表于 2025-3-28 10:41:29 | 只看該作者
Stability of Linear Differential Systems with Parametric ExcitationThe aim of this paper is to summarize both theoritical and numerical results concerning the dependence of the Lyapunov exponent of the solution of the solution of a linear equation, in terms of some parameters describing the law of the parametric excitation.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 23:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
西平县| 马关县| 霍城县| 荥阳市| 伊金霍洛旗| 辽中县| 江津市| 防城港市| 赤峰市| 大埔区| 临安市| 婺源县| 南充市| 泾川县| 三台县| 阿合奇县| 临邑县| 得荣县| 云霄县| 嘉义县| 金阳县| 旌德县| 西畴县| 博野县| 壤塘县| 布尔津县| 雷山县| 荥经县| 沿河| 芮城县| 克拉玛依市| 濉溪县| 永泰县| 洛南县| 兴安县| 黄大仙区| 怀宁县| 古丈县| 昌黎县| 南宁市| 成安县|