找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Reaction-Diffusion Systems; Conditional Symmetry Roman Cherniha,Vasyl‘ Davydovych Book 2017 Springer International Publishing AG

[復(fù)制鏈接]
樓主: Coenzyme
11#
發(fā)表于 2025-3-23 11:10:42 | 只看該作者
12#
發(fā)表于 2025-3-23 13:51:45 | 只看該作者
https://doi.org/10.1007/978-3-319-65467-6Nonlinear reaction-diffusion system; Lie and conditional symmetry; Lotka-Volterra system; Steady-state
13#
發(fā)表于 2025-3-23 19:49:31 | 只看該作者
Roman Cherniha,Vasyl‘ DavydovychPresents important results in solving nonlinear reaction-diffusion equations.Chapters contain ideas for further theoretical generalizations and examples for real world applications.Includes applicatio
14#
發(fā)表于 2025-3-23 23:35:53 | 只看該作者
15#
發(fā)表于 2025-3-24 04:08:53 | 只看該作者
16#
發(fā)表于 2025-3-24 08:50:54 | 只看該作者
17#
發(fā)表于 2025-3-24 10:45:53 | 只看該作者
,Conditional Symmetries and Exact Solutions of Diffusive Lotka–Volterra Systems,cted for the two-component diffusive Lotka–Volterra system and some examples are presented for the three-component diffusive Lotka–Volterra system. Moreover, a realistic interpretation for two and three competing species is provided for some exact solutions.
18#
發(fā)表于 2025-3-24 16:41:40 | 只看該作者
0075-8434 and examples for real world applications.Includes applicatio.This book presents several fundamental results in?solving nonlinear reaction-diffusion equations and systems using symmetry-based methods. Reaction-diffusion systems are fundamental modeling tools for mathematical biology with applications
19#
發(fā)表于 2025-3-24 21:35:47 | 只看該作者
Book 2017iffusion systems are fundamental modeling tools for mathematical biology with applications to ecology, population dynamics, pattern formation, morphogenesis, enzymatic reactions and chemotaxis. The book discusses the properties of nonlinear reaction-diffusion systems, which?are relevant for biologic
20#
發(fā)表于 2025-3-25 00:43:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 02:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
时尚| 孝义市| 屯门区| 醴陵市| 奎屯市| 临洮县| 南康市| 石景山区| 遂平县| 克东县| 三亚市| 将乐县| 自贡市| 普定县| 宜兴市| 阿拉善左旗| 砀山县| 宁城县| 韩城市| 洮南市| 洛浦县| 江永县| 高雄县| 双桥区| 沧州市| 兴业县| 中宁县| 星子县| 昂仁县| 乌海市| 林西县| 休宁县| 若尔盖县| 巴南区| 富民县| 固原市| 鲜城| 林甸县| 云安县| 宜宾市| 石泉县|