找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

12345
返回列表
打印 上一主題 下一主題

Titlebook: Nonlinear Principal Component Analysis and Its Applications; Yuichi Mori,Masahiro Kuroda,Naomichi Makino Book 2016 The Author(s) 2016 Alte

[復(fù)制鏈接]
樓主: 指責(zé)
41#
發(fā)表于 2025-3-28 17:49:43 | 只看該作者
42#
發(fā)表于 2025-3-28 21:26:30 | 只看該作者
2191-544X des an acceleration algorithm that speeds up the convergent This book expounds the principle and related applications of nonlinear principal component analysis (PCA), which is useful method to analyze mixed measurement levels data.?.In the part dealing with the principle, after a brief introduction
43#
發(fā)表于 2025-3-29 02:38:20 | 只看該作者
44#
發(fā)表于 2025-3-29 05:15:25 | 只看該作者
Joint Dimension Reduction and Clusterings problem, several methods have been proposed that jointly perform clustering of objects and dimension reduction of the variables. In this chapter, we review the technique whereby multiple correspondence analysis and k-means clustering are combined in order to investigate the relationships between qualitative variables.
45#
發(fā)表于 2025-3-29 09:05:02 | 只看該作者
Multiple Correspondence Analysisformulate an MCA. We introduce a formulation in which the quantified data matrix is approximated by a lower-rank matrix using the quantification technique proposed by Murakami et al. (Non-metric principal component analysis for categorical variables with multiple quantifications, .).
46#
發(fā)表于 2025-3-29 12:21:21 | 只看該作者
Variable Selection in Nonlinear Principal Component Analysis for numerical variables. In this chapter, we discuss variable selection in nonlinear PCA. We select a subset of variables that represents all variables as far as possible from mixed measurement level data using criteria in the modified PCA, which naturally includes a variable selection procedure.
12345
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 13:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
株洲县| 台北市| 吉水县| 喀喇| 获嘉县| 鲜城| 隆尧县| 新疆| 台南市| 安福县| 武强县| 凤庆县| 勃利县| 琼结县| 从化市| 河曲县| 大方县| 将乐县| 石景山区| 雅安市| 沙洋县| 寻甸| 镇平县| 乌兰县| 武功县| 乌兰浩特市| 浦东新区| 中宁县| 申扎县| 芜湖市| 水富县| 公主岭市| 灵武市| 彭水| 无为县| 安多县| 钦州市| 鲜城| 洛隆县| 凤翔县| 循化|